Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Unicode version

Theorem atpsubN 30564
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a  |-  A  =  ( Atoms `  K )
atpsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
atpsubN  |-  ( K  e.  V  ->  A  e.  S )

Proof of Theorem atpsubN
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3210 . . 3  |-  A  C_  A
2 ax-1 5 . . . . 5  |-  ( r  e.  A  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
32rgen 2621 . . . 4  |-  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
43rgen2w 2624 . . 3  |-  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
51, 4pm3.2i 441 . 2  |-  ( A 
C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
6 eqid 2296 . . 3  |-  ( le
`  K )  =  ( le `  K
)
7 eqid 2296 . . 3  |-  ( join `  K )  =  (
join `  K )
8 atpsub.a . . 3  |-  A  =  ( Atoms `  K )
9 atpsub.s . . 3  |-  S  =  ( PSubSp `  K )
106, 7, 8, 9ispsubsp 30556 . 2  |-  ( K  e.  V  ->  ( A  e.  S  <->  ( A  C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A ) ) ) )
115, 10mpbiri 224 1  |-  ( K  e.  V  ->  A  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   Atomscatm 30075   PSubSpcpsubsp 30307
This theorem is referenced by:  pclvalN  30701  pclclN  30702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-psubsp 30314
  Copyright terms: Public domain W3C validator