MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avglt2 Unicode version

Theorem avglt2 10166
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )

Proof of Theorem avglt2
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
21recnd 9074 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
3 2times 10059 . . . 4  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
42, 3syl 16 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
54breq2d 4188 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <  (
2  x.  B )  <-> 
( A  +  B
)  <  ( B  +  B ) ) )
6 readdcl 9033 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
7 2re 10029 . . . . 5  |-  2  e.  RR
8 2pos 10042 . . . . 5  |-  0  <  2
97, 8pm3.2i 442 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
109a1i 11 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  e.  RR  /\  0  <  2 ) )
11 ltdivmul 9842 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  +  B )  /  2 )  < 
B  <->  ( A  +  B )  <  (
2  x.  B ) ) )
126, 1, 10, 11syl3anc 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( A  +  B )  <  ( 2  x.  B ) ) )
13 ltadd1 9455 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B )
) )
14133anidm23 1243 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B ) ) )
155, 12, 143bitr4rd 278 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4176  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950    + caddc 8953    x. cmul 8955    < clt 9080    / cdiv 9637   2c2 10009
This theorem is referenced by:  avgle1  10167  geomulcvg  12612  ruclem2  12790  ruclem3  12791  dvferm1lem  19825  dvferm2lem  19827  radcnvle  20293  psercnlem1  20298  pserdvlem1  20300  pserdvlem2  20301  logtayl  20508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-2 10018
  Copyright terms: Public domain W3C validator