MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-5 Structured version   Unicode version

Axiom ax-5 1567
Description: Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ax-5  |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )

Detailed syntax breakdown of Axiom ax-5
StepHypRef Expression
1 wph . . . 4  wff  ph
2 wps . . . 4  wff  ps
31, 2wi 4 . . 3  wff  ( ph  ->  ps )
4 vx . . 3  set  x
53, 4wal 1550 . 2  wff  A. x
( ph  ->  ps )
61, 4wal 1550 . . 3  wff  A. x ph
72, 4wal 1550 . . 3  wff  A. x ps
86, 7wi 4 . 2  wff  ( A. x ph  ->  A. x ps )
95, 8wi 4 1  wff  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
Colors of variables: wff set class
This axiom is referenced by:  alim  1568  alimi  1569  spfw  1704  spwOLD  1708  ax5o  1766  19.21t  1814  a16gOLD  2050  3ax5  28695  3ax5VD  29048  hbalgVD  29091  a16gNEW7  29620  ax7w7tAUX7  29730
  Copyright terms: Public domain W3C validator