MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac2 Unicode version

Axiom ax-ac2 8089
Description: In order to avoid uses of ax-reg 7306 for derivation of AC equivalents, we provide ax-ac2 8089, which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as theorem ackm 8092. We removed the leading quantifier to make it slightly shorter, since we have ax-gen 1533 available. The derivation of ax-ac2 8089 from ax-ac 8085 is shown by theorem axac2 8093, and the reverse derivation by axac 8094. Note that we use ax-reg 7306 to derive ax-ac 8085 from ax-ac2 8089, but not to derive ax-ac2 8089 from ax-ac 8085. (Contributed by NM, 19-Dec-2016.)
Assertion
Ref Expression
ax-ac2  |-  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Distinct variable group:    x, y, z, v, u

Detailed syntax breakdown of Axiom ax-ac2
StepHypRef Expression
1 vy . . . . . . . 8  set  y
2 vx . . . . . . . 8  set  x
31, 2wel 1685 . . . . . . 7  wff  y  e.  x
4 vz . . . . . . . . 9  set  z
54, 1wel 1685 . . . . . . . 8  wff  z  e.  y
6 vv . . . . . . . . . . 11  set  v
76, 2wel 1685 . . . . . . . . . 10  wff  v  e.  x
81, 6weq 1624 . . . . . . . . . . 11  wff  y  =  v
98wn 3 . . . . . . . . . 10  wff  -.  y  =  v
107, 9wa 358 . . . . . . . . 9  wff  ( v  e.  x  /\  -.  y  =  v )
114, 6wel 1685 . . . . . . . . 9  wff  z  e.  v
1210, 11wa 358 . . . . . . . 8  wff  ( ( v  e.  x  /\  -.  y  =  v
)  /\  z  e.  v )
135, 12wi 4 . . . . . . 7  wff  ( z  e.  y  ->  (
( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v ) )
143, 13wa 358 . . . . . 6  wff  ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )
153wn 3 . . . . . . 7  wff  -.  y  e.  x
164, 2wel 1685 . . . . . . . 8  wff  z  e.  x
176, 4wel 1685 . . . . . . . . . 10  wff  v  e.  z
186, 1wel 1685 . . . . . . . . . 10  wff  v  e.  y
1917, 18wa 358 . . . . . . . . 9  wff  ( v  e.  z  /\  v  e.  y )
20 vu . . . . . . . . . . . 12  set  u
2120, 4wel 1685 . . . . . . . . . . 11  wff  u  e.  z
2220, 1wel 1685 . . . . . . . . . . 11  wff  u  e.  y
2321, 22wa 358 . . . . . . . . . 10  wff  ( u  e.  z  /\  u  e.  y )
2420, 6weq 1624 . . . . . . . . . 10  wff  u  =  v
2523, 24wi 4 . . . . . . . . 9  wff  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v )
2619, 25wa 358 . . . . . . . 8  wff  ( ( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) )
2716, 26wi 4 . . . . . . 7  wff  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) )
2815, 27wa 358 . . . . . 6  wff  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) )
2914, 28wo 357 . . . . 5  wff  ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3029, 20wal 1527 . . . 4  wff  A. u
( ( y  e.  x  /\  ( z  e.  y  ->  (
( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v ) ) )  \/  ( -.  y  e.  x  /\  (
z  e.  x  -> 
( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3130, 6wex 1528 . . 3  wff  E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3231, 4wal 1527 . 2  wff  A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
3332, 1wex 1528 1  wff  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Colors of variables: wff set class
This axiom is referenced by:  axac3  8090
  Copyright terms: Public domain W3C validator