MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-addcl Structured version   Unicode version

Axiom ax-addcl 9055
Description: Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by theorem axaddcl 9031. Proofs should normally use addcl 9077 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Detailed syntax breakdown of Axiom ax-addcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 8993 . . . 4  class  CC
31, 2wcel 1726 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 1726 . . 3  wff  B  e.  CC
63, 5wa 360 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 caddc 8998 . . . 4  class  +
81, 4, 7co 6084 . . 3  class  ( A  +  B )
98, 2wcel 1726 . 2  wff  ( A  +  B )  e.  CC
106, 9wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
This axiom is referenced by:  addcl  9077
  Copyright terms: Public domain W3C validator