MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1 Unicode version

Theorem ax1 1421
Description: Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax1  |-  ( ph  ->  ( ps  ->  ph )
)

Proof of Theorem ax1
StepHypRef Expression
1 luklem5 1417 1  |-  ( ph  ->  ( ps  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 8  ax-meredith 1396
  Copyright terms: Public domain W3C validator