Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10from10o Structured version   Unicode version

Theorem ax10from10o 2255
 Description: Rederivation of ax-10 2218 from original version ax-10o 2217. See theorem ax10o 2039 for the derivation of ax-10o 2217 from ax-10 2218. This theorem should not be referenced in any proof. Instead, use ax-10 2218 above so that uses of ax-10 2218 can be more easily identified, or use aecom-o 2229 when this form is needed for studies involving ax-10o 2217 and omitting ax-17 1627. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax10from10o

Proof of Theorem ax10from10o
StepHypRef Expression
1 ax-10o 2217 . . 3
21pm2.43i 46 . 2
3 equcomi 1692 . . 3
43alimi 1569 . 2
52, 4syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-10o 2217 This theorem depends on definitions:  df-bi 179  df-ex 1552
 Copyright terms: Public domain W3C validator