MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10from10o Unicode version

Theorem ax10from10o 2116
Description: Rederivation of ax-10 2079 from original version ax-10o 2078. See theorem ax10o 1892 for the derivation of ax-10o 2078 from ax-10 2079.

This theorem should not be referenced in any proof. Instead, use ax-10 2079 above so that uses of ax-10 2079 can be more easily identified, or use aecom-o 2090 when this form is needed for studies involving ax-10o 2078 and omitting ax-17 1603. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax10from10o  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem ax10from10o
StepHypRef Expression
1 ax-10o 2078 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
21pm2.43i 43 . 2  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
3 equcomi 1646 . . 3  |-  ( x  =  y  ->  y  =  x )
43alimi 1546 . 2  |-  ( A. y  x  =  y  ->  A. y  y  =  x )
52, 4syl 15 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-10o 2078
  Copyright terms: Public domain W3C validator