MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10lem1 Unicode version

Theorem ax10lem1 1889
Description: Lemma for ax10 1897. Change bound variable. (Contributed by NM, 22-Jul-2015.)
Assertion
Ref Expression
ax10lem1  |-  ( A. x  x  =  w  ->  A. y  y  =  w )
Distinct variable groups:    x, w    y, w

Proof of Theorem ax10lem1
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ax-8 1661 . . 3  |-  ( x  =  v  ->  (
x  =  w  -> 
v  =  w ) )
21cbvalivw 1660 . 2  |-  ( A. x  x  =  w  ->  A. v  v  =  w )
3 ax-8 1661 . . 3  |-  ( v  =  y  ->  (
v  =  w  -> 
y  =  w ) )
43cbvalivw 1660 . 2  |-  ( A. v  v  =  w  ->  A. y  y  =  w )
52, 4syl 15 1  |-  ( A. x  x  =  w  ->  A. y  y  =  w )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem is referenced by:  ax10lem3  1891  ax10lem4  1894  ax10lem5  1895  ax10lem4NEW7  29448  ax10lem5NEW7  29449  ax10lem18ALT  29746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator