MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10lem6 Unicode version

Theorem ax10lem6 1896
Description: Lemma for ax10 1897. Similar to ax10o 1905 but with reversed antecedent. (Contributed by NM, 25-Jul-2015.)
Assertion
Ref Expression
ax10lem6  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ph )
)

Proof of Theorem ax10lem6
StepHypRef Expression
1 ax-11 1727 . . 3  |-  ( y  =  x  ->  ( A. x ph  ->  A. y
( y  =  x  ->  ph ) ) )
21sps 1751 . 2  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ( y  =  x  ->  ph )
) )
3 pm2.27 35 . . 3  |-  ( y  =  x  ->  (
( y  =  x  ->  ph )  ->  ph )
)
43al2imi 1551 . 2  |-  ( A. y  y  =  x  ->  ( A. y ( y  =  x  ->  ph )  ->  A. y ph ) )
52, 4syld 40 1  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem is referenced by:  ax10  1897  ax10NEW7  29450  dral1NEW7  29470  a12stdy1-x12  29733  a12stdy2-x12  29734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
  Copyright terms: Public domain W3C validator