Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10o-o Structured version   Unicode version

Theorem ax10o-o 2279
 Description: Show that ax-10o 2215 can be derived from ax-10 2216. An open problem is whether this theorem can be derived from ax-10 2216 and the others when ax-11 1761 is replaced with ax-11o 2217. See theorem ax10from10o 2253 for the rederivation of ax-10 2216 from ax10o 2038. Normally, ax10o 2038 should be used rather than ax-10o 2215 or ax10o-o 2279, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax10o-o

Proof of Theorem ax10o-o
StepHypRef Expression
1 ax-10 2216 . 2
2 ax11 2231 . . . 4
32equcoms 1693 . . 3
43sps-o 2235 . 2
5 pm2.27 37 . . 3
65al2imi 1570 . 2
71, 4, 6sylsyld 54 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-7 1749  ax-4 2211  ax-5o 2212  ax-6o 2213  ax-10o 2215  ax-10 2216  ax-11o 2217  ax-12o 2218 This theorem depends on definitions:  df-bi 178  df-ex 1551
 Copyright terms: Public domain W3C validator