MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11 Unicode version

Theorem ax11 2094
Description: Rederivation of axiom ax-11 1715 from ax-11o 2080, ax-10o 2078, and other older axioms. The proof does not require ax-16 2083 or ax-17 1603. See theorem ax11o 1934 for the derivation of ax-11o 2080 from ax-11 1715.

An open problem is whether we can prove this using ax-10 2079 instead of ax-10o 2078.

This proof uses newer axioms ax-5 1544 and ax-9 1635, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-5o 2075 and ax-9o 2077. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax11  |-  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )

Proof of Theorem ax11
StepHypRef Expression
1 biidd 228 . . . . 5  |-  ( A. x  x  =  y  ->  ( ph  <->  ph ) )
21dral1-o 2093 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ph ) )
3 ax-1 5 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  ph ) )
43alimi 1546 . . . 4  |-  ( A. x ph  ->  A. x
( x  =  y  ->  ph ) )
52, 4syl6bir 220 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
65a1d 22 . 2  |-  ( A. x  x  =  y  ->  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) ) )
7 ax-4 2074 . . 3  |-  ( A. y ph  ->  ph )
8 ax-11o 2080 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
97, 8syl7 63 . 2  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
106, 9pm2.61i 156 1  |-  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  ax10o-o  2142
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-7 1708  ax-4 2074  ax-5o 2075  ax-6o 2076  ax-10o 2078  ax-11o 2080  ax-12o 2081
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator