Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11a2 Unicode version

Theorem ax11a2 1933
 Description: Derive ax-11o 2080 from a hypothesis in the form of ax-11 1715. ax-10 2079 and ax-11 1715 are used by the proof, but not ax-10o 2078 or ax-11o 2080. TODO: figure out if this is useful, or if it should be simplified or eliminated. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1
Assertion
Ref Expression
ax11a2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1603 . . 3
2 ax11a2.1 . . 3
31, 2syl5 28 . 2
43ax11v2 1932 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1527 This theorem is referenced by:  ax11o  1934 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator