MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11indalem Unicode version

Theorem ax11indalem 2136
Description: Lemma for ax11inda2 2138 and ax11inda 2139. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax11indalem.1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Assertion
Ref Expression
ax11indalem  |-  ( -. 
A. y  y  =  z  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) ) )

Proof of Theorem ax11indalem
StepHypRef Expression
1 ax-1 5 . . . . . . . . 9  |-  ( A. x ph  ->  ( x  =  y  ->  A. x ph ) )
21a5i-o 2089 . . . . . . . 8  |-  ( A. x ph  ->  A. x
( x  =  y  ->  A. x ph )
)
32a1i 10 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( A. x ph  ->  A. x ( x  =  y  ->  A. x ph ) ) )
4 biidd 228 . . . . . . . 8  |-  ( A. z  z  =  x  ->  ( ph  <->  ph ) )
54dral1-o 2093 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( A. z ph  <->  A. x ph ) )
65imbi2d 307 . . . . . . . 8  |-  ( A. z  z  =  x  ->  ( ( x  =  y  ->  A. z ph )  <->  ( x  =  y  ->  A. x ph ) ) )
76dral2-o 2120 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( A. x ( x  =  y  ->  A. z ph )  <->  A. x
( x  =  y  ->  A. x ph )
) )
83, 5, 73imtr4d 259 . . . . . 6  |-  ( A. z  z  =  x  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
98aecoms-o 2091 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
109a1d 22 . . . 4  |-  ( A. x  x  =  z  ->  ( x  =  y  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) ) )
1110a1d 22 . . 3  |-  ( A. x  x  =  z  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) ) ) )
1211adantr 451 . 2  |-  ( ( A. x  x  =  z  /\  -.  A. y  y  =  z
)  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) ) )
13 simplr 731 . . . . 5  |-  ( ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  -.  A. x  x  =  y )  /\  x  =  y )  ->  -.  A. x  x  =  y )
14 aecom-o 2090 . . . . . . . . 9  |-  ( A. z  z  =  x  ->  A. x  x  =  z )
1514con3i 127 . . . . . . . 8  |-  ( -. 
A. x  x  =  z  ->  -.  A. z 
z  =  x )
16 aecom-o 2090 . . . . . . . . 9  |-  ( A. z  z  =  y  ->  A. y  y  =  z )
1716con3i 127 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  -.  A. z 
z  =  y )
18 ax12o 1875 . . . . . . . . 9  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
1918imp 418 . . . . . . . 8  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( x  =  y  ->  A. z  x  =  y )
)
2015, 17, 19syl2an 463 . . . . . . 7  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  ( x  =  y  ->  A. z  x  =  y )
)
2120imp 418 . . . . . 6  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  x  =  y )  ->  A. z  x  =  y )
2221adantlr 695 . . . . 5  |-  ( ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  -.  A. x  x  =  y )  /\  x  =  y )  ->  A. z  x  =  y )
23 hbnae-o 2118 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
24 hba1-o 2088 . . . . . . 7  |-  ( A. z  x  =  y  ->  A. z A. z  x  =  y )
2523, 24hban 1736 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  A. z
( -.  A. x  x  =  y  /\  A. z  x  =  y ) )
26 ax-4 2074 . . . . . . 7  |-  ( A. z  x  =  y  ->  x  =  y )
27 ax11indalem.1 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
2827imp 418 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) )
2926, 28sylan2 460 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
3025, 29alimdh 1550 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  ( A. z ph  ->  A. z A. x ( x  =  y  ->  ph ) ) )
3113, 22, 30syl2anc 642 . . . 4  |-  ( ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z ph  ->  A. z A. x
( x  =  y  ->  ph ) ) )
32 ax-7 1708 . . . . . 6  |-  ( A. z A. x ( x  =  y  ->  ph )  ->  A. x A. z
( x  =  y  ->  ph ) )
33 hbnae-o 2118 . . . . . . . 8  |-  ( -. 
A. x  x  =  z  ->  A. x  -.  A. x  x  =  z )
34 hbnae-o 2118 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  A. x  -.  A. y  y  =  z )
3533, 34hban 1736 . . . . . . 7  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  A. x
( -.  A. x  x  =  z  /\  -.  A. y  y  =  z ) )
36 hbnae-o 2118 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  z  ->  A. z  -.  A. x  x  =  z )
37 hbnae-o 2118 . . . . . . . . . 10  |-  ( -. 
A. y  y  =  z  ->  A. z  -.  A. y  y  =  z )
3836, 37hban 1736 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  A. z
( -.  A. x  x  =  z  /\  -.  A. y  y  =  z ) )
3938, 20nfdh 1747 . . . . . . . 8  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  F/ z  x  =  y )
40 19.21t 1790 . . . . . . . 8  |-  ( F/ z  x  =  y  ->  ( A. z
( x  =  y  ->  ph )  <->  ( x  =  y  ->  A. z ph ) ) )
4139, 40syl 15 . . . . . . 7  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  ( A. z ( x  =  y  ->  ph )  <->  ( x  =  y  ->  A. z ph ) ) )
4235, 41albidh 1577 . . . . . 6  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  ( A. x A. z ( x  =  y  ->  ph )  <->  A. x ( x  =  y  ->  A. z ph ) ) )
4332, 42syl5ib 210 . . . . 5  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  ( A. z A. x ( x  =  y  ->  ph )  ->  A. x ( x  =  y  ->  A. z ph ) ) )
4443ad2antrr 706 . . . 4  |-  ( ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z A. x ( x  =  y  ->  ph )  ->  A. x ( x  =  y  ->  A. z ph ) ) )
4531, 44syld 40 . . 3  |-  ( ( ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
4645exp31 587 . 2  |-  ( ( -.  A. x  x  =  z  /\  -.  A. y  y  =  z )  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) ) )
4712, 46pm2.61ian 765 1  |-  ( -. 
A. y  y  =  z  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   F/wnf 1531
This theorem is referenced by:  ax11inda2  2138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-4 2074  ax-5o 2075  ax-6o 2076  ax-10o 2078  ax-12o 2081
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator