Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1934
 Description: Derivation of set.mm's original ax-11o 2080 from ax-10 2079 and the shorter ax-11 1715 that has replaced it. An open problem is whether this theorem can be proved without relying on ax-16 2083 or ax-17 1603 (given all of the original and new versions of sp 1716 through ax-15 2082). Another open problem is whether this theorem can be proved without relying on ax12o 1875. Theorem ax11 2094 shows the reverse derivation of ax-11 1715 from ax-11o 2080. Normally, ax11o 1934 should be used rather than ax-11o 2080, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)
Assertion
Ref Expression
ax11o

Proof of Theorem ax11o
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-11 1715 . 2
21ax11a2 1933 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1527 This theorem is referenced by:  ax11b  1935  equs5  1936  ax11v  2036  a12study  29132  a12studyALT  29133  a12study3  29135 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator