Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11wdemo Structured version   Unicode version

Theorem ax11wdemo 1739
 Description: Example of an application of ax11w 1737 that results in an instance of ax-11 1762 for a contrived formula with mixed free and bound variables, , in place of . The proof illustrates bound variable renaming with cbvalvw 1716 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.)
Assertion
Ref Expression
ax11wdemo
Distinct variable group:   ,,

Proof of Theorem ax11wdemo
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 1729 . . 3
2 elequ2 1731 . . . . 5
32cbvalvw 1716 . . . 4
43a1i 11 . . 3
5 elequ1 1729 . . . . . 6
65albidv 1636 . . . . 5
76cbvalvw 1716 . . . 4
8 elequ2 1731 . . . . . 6
98albidv 1636 . . . . 5
109albidv 1636 . . . 4
117, 10syl5bb 250 . . 3
121, 4, 113anbi123d 1255 . 2
13 elequ2 1731 . . 3
147a1i 11 . . 3
1513, 143anbi13d 1257 . 2
1612, 15ax11w 1737 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   w3a 937  wal 1550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-ex 1552
 Copyright terms: Public domain W3C validator