Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12 Unicode version

Theorem ax12 2095
 Description: Derive ax-12 1866 from ax-12o 2081 and other older axioms. This proof uses newer axioms ax-5 1544 and ax-9 1635, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-5o 2075 and ax-9o 2077. (Contributed by NM, 21-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax12

Proof of Theorem ax12
StepHypRef Expression
1 ax-4 2074 . . . . . 6
21con3i 127 . . . . 5
32adantr 451 . . . 4
4 equtrr 1653 . . . . . . . 8
54equcoms 1651 . . . . . . 7
65con3rr3 128 . . . . . 6
76imp 418 . . . . 5
8 ax-4 2074 . . . . 5
97, 8nsyl 113 . . . 4
10 ax-12o 2081 . . . 4
113, 9, 10sylc 56 . . 3
1211ex 423 . 2
1312pm2.43d 44 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wal 1527 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-4 2074  ax-12o 2081 This theorem depends on definitions:  df-bi 177  df-an 360
 Copyright terms: Public domain W3C validator