Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12OLD Structured version   Unicode version

Theorem ax12OLD 2021
 Description: Obsolete proof of ax12 2020 as of 31-Jan-2018. (Contributed by NM, 21-Dec-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax12OLD

Proof of Theorem ax12OLD
StepHypRef Expression
1 sp 1764 . . . . . 6
21con3i 130 . . . . 5
32adantr 453 . . . 4
4 equtrr 1696 . . . . . . . 8
54equcoms 1694 . . . . . . 7
65con3rr3 131 . . . . . 6
76imp 420 . . . . 5
8 sp 1764 . . . . 5
97, 8nsyl 116 . . . 4
10 ax12o 2011 . . . 4
113, 9, 10sylc 59 . . 3
1211ex 425 . 2
1312pm2.43d 47 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360  wal 1550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator