Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12bOLD Structured version   Unicode version

Theorem ax12bOLD 1702
 Description: Obsolete version of ax12b 1701 as of 12-Aug-2017. (Contributed by NM, 2-May-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax12bOLD

Proof of Theorem ax12bOLD
StepHypRef Expression
1 bi2.04 351 . . . 4
2 equtrr 1695 . . . . . . . . 9
32equcoms 1693 . . . . . . . 8
43con3d 127 . . . . . . 7
54pm4.71d 616 . . . . . 6
65imbi1d 309 . . . . 5
76pm5.74i 237 . . . 4
81, 7bitri 241 . . 3
9 bi2.04 351 . . 3
108, 9bitri 241 . 2
11 impexp 434 . 2
1210, 11bitri 241 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1549 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
 Copyright terms: Public domain W3C validator