Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax16ALT2 Structured version   Unicode version

Theorem ax16ALT2 2155
 Description: Alternate proof of ax16 2050. (Contributed by NM, 8-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax16ALT2
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax16ALT2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 aev 2047 . 2
2 sbequ12 1944 . . . . 5
32biimpcd 216 . . . 4
43alimdv 1631 . . 3
5 nfv 1629 . . . . 5
65nfs1 2100 . . . 4
7 stdpc7 1942 . . . 4
86, 5, 7cbv3 1971 . . 3
94, 8syl6com 33 . 2
101, 9syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549  wsb 1658 This theorem is referenced by:  a16gALT  2156 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator