Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax16b Structured version   Unicode version

Theorem ax16b 4393
 Description: This theorem shows that axiom ax-16 2223 is redundant in the presence of theorem dtru 4392, which states simply that at least two things exist. This justifies the remark at http://us.metamath.org/mpeuni/mmzfcnd.html#twoness (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
ax16b
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax16b
StepHypRef Expression
1 dtru 4392 . 2
21pm2.21i 126 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-nul 4340  ax-pow 4379 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator