MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax16b Unicode version

Theorem ax16b 4202
Description: This theorem shows that axiom ax-16 2083 is redundant in the presence of theorem dtru 4201, which states simply that at least two things exist. This justifies the remark at http://us.metamath.org/mpeuni/mmzfcnd.html#twoness (which links to this theorem). (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
ax16b  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax16b
StepHypRef Expression
1 dtru 4201 . 2  |-  -.  A. x  x  =  y
21pm2.21i 123 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527    = wceq 1623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-nul 4149  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator