Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax4567 Structured version   Unicode version

Theorem ax4567 27580
Description: Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1556 as the inference rule. This proof extends the idea of ax467 2248 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.)
Assertion
Ref Expression
ax4567  |-  ( ( A. x A. y  -.  A. x A. y
( A. y ph  ->  ps )  ->  ( ph  ->  A. y ( A. y ph  ->  ps )
) )  ->  ( A. y ph  ->  A. y ps ) )

Proof of Theorem ax4567
StepHypRef Expression
1 ax5o 1766 . . 3  |-  ( A. y ( A. y ph  ->  ps )  -> 
( A. y ph  ->  A. y ps )
)
2 ax-6 1745 . . . . 5  |-  ( -. 
A. y ( A. y ph  ->  ps )  ->  A. y  -.  A. y ( A. y ph  ->  ps ) )
3 ax6o 1767 . . . . . 6  |-  ( -. 
A. x  -.  A. x A. y ( A. y ph  ->  ps )  ->  A. y ( A. y ph  ->  ps )
)
43con1i 124 . . . . 5  |-  ( -. 
A. y ( A. y ph  ->  ps )  ->  A. x  -.  A. x A. y ( A. y ph  ->  ps )
)
52, 4alrimih 1575 . . . 4  |-  ( -. 
A. y ( A. y ph  ->  ps )  ->  A. y A. x  -.  A. x A. y
( A. y ph  ->  ps ) )
6 ax-7 1750 . . . 4  |-  ( A. y A. x  -.  A. x A. y ( A. y ph  ->  ps )  ->  A. x A. y  -.  A. x A. y
( A. y ph  ->  ps ) )
75, 6syl 16 . . 3  |-  ( -. 
A. y ( A. y ph  ->  ps )  ->  A. x A. y  -.  A. x A. y
( A. y ph  ->  ps ) )
81, 7nsyl4 137 . 2  |-  ( -. 
A. x A. y  -.  A. x A. y
( A. y ph  ->  ps )  ->  ( A. y ph  ->  A. y ps ) )
9 pm2.21 103 . . . 4  |-  ( -. 
ph  ->  ( ph  ->  A. y ps ) )
109spsd 1772 . . 3  |-  ( -. 
ph  ->  ( A. y ph  ->  A. y ps )
)
1110, 1ja 156 . 2  |-  ( (
ph  ->  A. y ( A. y ph  ->  ps )
)  ->  ( A. y ph  ->  A. y ps ) )
128, 11ja 156 1  |-  ( ( A. x A. y  -.  A. x A. y
( A. y ph  ->  ps )  ->  ( ph  ->  A. y ( A. y ph  ->  ps )
) )  ->  ( A. y ph  ->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1550
This theorem is referenced by:  ax4567to4  27581  ax4567to5  27582  ax4567to6  27583  ax4567to7  27584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-ex 1552
  Copyright terms: Public domain W3C validator