Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax467 Unicode version

Theorem ax467 2108
 Description: Proof of a single axiom that can replace ax-4 2074, ax-6o 2076, and ax-7 1708 in a subsystem that includes these axioms plus ax-5o 2075 and ax-gen 1533 (and propositional calculus). See ax467to4 2109, ax467to6 2110, and ax467to7 2111 for the re-derivation of those axioms. This theorem extends the idea in Scott Fenton's ax46 2101. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax467

Proof of Theorem ax467
StepHypRef Expression
1 ax-4 2074 . . 3
2 ax6 2086 . . . 4
3 ax-6o 2076 . . . . . 6
43con1i 121 . . . . 5
54alimi 1546 . . . 4
6 ax-7 1708 . . . 4
72, 5, 63syl 18 . . 3
81, 7nsyl4 134 . 2
9 ax-4 2074 . 2
108, 9ja 153 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1527 This theorem is referenced by:  ax467to4  2109  ax467to6  2110  ax467to7  2111 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-7 1708  ax-4 2074  ax-5o 2075  ax-6o 2076
 Copyright terms: Public domain W3C validator