MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax467to6 Structured version   Unicode version

Theorem ax467to6 2250
Description: Re-derivation of ax-6o 2216 from ax467 2248. Note that ax-6o 2216 and ax-7 1750 are not used by the re-derivation. The use of alimi 1569 (which uses ax-4 2214) is allowed since we have already proved ax467to4 2249. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax467to6  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Proof of Theorem ax467to6
StepHypRef Expression
1 hba1-o 2228 . . . . . 6  |-  ( A. x ph  ->  A. x A. x ph )
21con3i 130 . . . . 5  |-  ( -. 
A. x A. x ph  ->  -.  A. x ph )
32alimi 1569 . . . 4  |-  ( A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
43sps-o 2238 . . 3  |-  ( A. x A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
54con3i 130 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  -.  A. x A. x  -.  A. x A. x ph )
6 pm2.21 103 . 2  |-  ( -. 
A. x A. x  -.  A. x A. x ph  ->  ( A. x A. x  -.  A. x A. x ph  ->  A. x ph ) )
7 ax467 2248 . 2  |-  ( ( A. x A. x  -.  A. x A. x ph  ->  A. x ph )  ->  ph )
85, 6, 73syl 19 1  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1550
This theorem is referenced by:  ax467to7  2251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-7 1750  ax-4 2214  ax-5o 2215  ax-6o 2216
  Copyright terms: Public domain W3C validator