Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax467to7 Structured version   Unicode version

Theorem ax467to7 2248
 Description: Re-derivation of ax-7 1749 from ax467 2245. Note that ax-6o 2213 and ax-7 1749 are not used by the re-derivation. The use of alimi 1568 (which uses ax-4 2211) is allowed since we have already proved ax467to4 2246. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax467to7

Proof of Theorem ax467to7
StepHypRef Expression
1 ax467to6 2247 . . 3
21con4i 124 . 2
3 pm2.21 102 . . . . . 6
4 ax467 2245 . . . . . 6
53, 4syl 16 . . . . 5
65alimi 1568 . . . 4
7 ax467to6 2247 . . . 4
86, 7nsyl4 136 . . 3
98alimi 1568 . 2
102, 9syl 16 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1549 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-7 1749  ax-4 2211  ax-5o 2212  ax-6o 2213
 Copyright terms: Public domain W3C validator