MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax46to4 Unicode version

Theorem ax46to4 2115
Description: Re-derivation of ax-4 2087 from ax46 2114. Only propositional calculus is used for the re-derivation. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax46to4  |-  ( A. x ph  ->  ph )

Proof of Theorem ax46to4
StepHypRef Expression
1 ax-1 5 . 2  |-  ( A. x ph  ->  ( A. x  -.  A. x ph  ->  A. x ph )
)
2 ax46 2114 . 2  |-  ( ( A. x  -.  A. x ph  ->  A. x ph )  ->  ph )
31, 2syl 15 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-4 2087  ax-6o 2089
  Copyright terms: Public domain W3C validator