Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem1 Unicode version

Theorem ax5seglem1 24556
Description: Lemma for ax5seg 24566. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  ( ( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    i, N, j    T, i, j

Proof of Theorem ax5seglem1
StepHypRef Expression
1 simpl2l 1008 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
2 fveecn 24530 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
31, 2sylancom 648 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
4 simpl2r 1009 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  C  e.  ( EE `  N ) )
5 fveecn 24530 . . . . 5  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
64, 5sylancom 648 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7 0re 8838 . . . . . . . . . 10  |-  0  e.  RR
8 1re 8837 . . . . . . . . . 10  |-  1  e.  RR
97, 8elicc2i 10716 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
109simp1bi 970 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
1110adantr 451 . . . . . . 7  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  ->  T  e.  RR )
12113ad2ant3 978 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  RR )
1312recnd 8861 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  CC )
1413adantr 451 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  T  e.  CC )
15 fveq2 5525 . . . . . . . 8  |-  ( i  =  j  ->  ( B `  i )  =  ( B `  j ) )
16 fveq2 5525 . . . . . . . . . 10  |-  ( i  =  j  ->  ( A `  i )  =  ( A `  j ) )
1716oveq2d 5874 . . . . . . . . 9  |-  ( i  =  j  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( ( 1  -  T )  x.  ( A `  j
) ) )
18 fveq2 5525 . . . . . . . . . 10  |-  ( i  =  j  ->  ( C `  i )  =  ( C `  j ) )
1918oveq2d 5874 . . . . . . . . 9  |-  ( i  =  j  ->  ( T  x.  ( C `  i ) )  =  ( T  x.  ( C `  j )
) )
2017, 19oveq12d 5876 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2115, 20eqeq12d 2297 . . . . . . 7  |-  ( i  =  j  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) )
2221rspccva 2883 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2322adantll 694 . . . . 5  |-  ( ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
24233ad2antl3 1119 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )
25 oveq2 5866 . . . . . 6  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( A `  j
)  -  ( B `
 j ) )  =  ( ( A `
 j )  -  ( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) ) ) )
2625oveq1d 5873 . . . . 5  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( A `  j )  -  ( B `  j )
) ^ 2 )  =  ( ( ( A `  j )  -  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) ) ^
2 ) )
27 subdi 9213 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  ( T  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( T  x.  ( A `  j ) )  -  ( T  x.  ( C `  j )
) ) )
28273coml 1158 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( T  x.  ( A `  j ) )  -  ( T  x.  ( C `  j )
) ) )
29 ax-1cn 8795 . . . . . . . . . . . . . 14  |-  1  e.  CC
30 subcl 9051 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
3129, 30mpan 651 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
3231adantl 452 . . . . . . . . . . . 12  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
33 simpl 443 . . . . . . . . . . . 12  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( A `  j
)  e.  CC )
34 subdir 9214 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC )  -> 
( ( 1  -  ( 1  -  T
) )  x.  ( A `  j )
)  =  ( ( 1  x.  ( A `
 j ) )  -  ( ( 1  -  T )  x.  ( A `  j
) ) ) )
3529, 34mp3an1 1264 . . . . . . . . . . . 12  |-  ( ( ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC )  -> 
( ( 1  -  ( 1  -  T
) )  x.  ( A `  j )
)  =  ( ( 1  x.  ( A `
 j ) )  -  ( ( 1  -  T )  x.  ( A `  j
) ) ) )
3632, 33, 35syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  ( 1  -  T
) )  x.  ( A `  j )
)  =  ( ( 1  x.  ( A `
 j ) )  -  ( ( 1  -  T )  x.  ( A `  j
) ) ) )
37 nncan 9076 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
3829, 37mpan 651 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
1  -  ( 1  -  T ) )  =  T )
3938oveq1d 5873 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( 1  -  (
1  -  T ) )  x.  ( A `
 j ) )  =  ( T  x.  ( A `  j ) ) )
4039adantl 452 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  ( 1  -  T
) )  x.  ( A `  j )
)  =  ( T  x.  ( A `  j ) ) )
41 mulid2 8836 . . . . . . . . . . . . 13  |-  ( ( A `  j )  e.  CC  ->  (
1  x.  ( A `
 j ) )  =  ( A `  j ) )
4241oveq1d 5873 . . . . . . . . . . . 12  |-  ( ( A `  j )  e.  CC  ->  (
( 1  x.  ( A `  j )
)  -  ( ( 1  -  T )  x.  ( A `  j ) ) )  =  ( ( A `
 j )  -  ( ( 1  -  T )  x.  ( A `  j )
) ) )
4342adantr 451 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  x.  ( A `  j
) )  -  (
( 1  -  T
)  x.  ( A `
 j ) ) )  =  ( ( A `  j )  -  ( ( 1  -  T )  x.  ( A `  j
) ) ) )
4436, 40, 433eqtr3rd 2324 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( A `  j )  -  (
( 1  -  T
)  x.  ( A `
 j ) ) )  =  ( T  x.  ( A `  j ) ) )
4544oveq1d 5873 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( ( A `
 j )  -  ( ( 1  -  T )  x.  ( A `  j )
) )  -  ( T  x.  ( C `  j ) ) )  =  ( ( T  x.  ( A `  j ) )  -  ( T  x.  ( C `  j )
) ) )
46453adant2 974 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( A `  j )  -  (
( 1  -  T
)  x.  ( A `
 j ) ) )  -  ( T  x.  ( C `  j ) ) )  =  ( ( T  x.  ( A `  j ) )  -  ( T  x.  ( C `  j )
) ) )
47 simp1 955 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( A `  j )  e.  CC )
48 mulcl 8821 . . . . . . . . . . . 12  |-  ( ( ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC )  -> 
( ( 1  -  T )  x.  ( A `  j )
)  e.  CC )
4931, 48sylan 457 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  ( A `  j )  e.  CC )  -> 
( ( 1  -  T )  x.  ( A `  j )
)  e.  CC )
5049ancoms 439 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  x.  ( A `  j )
)  e.  CC )
51503adant2 974 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( A `
 j ) )  e.  CC )
52 mulcl 8821 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( T  x.  ( C `  j )
)  e.  CC )
5352ancoms 439 . . . . . . . . . 10  |-  ( ( ( C `  j
)  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( C `  j )
)  e.  CC )
54533adant1 973 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( C `  j ) )  e.  CC )
5547, 51, 54subsub4d 9188 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( A `  j )  -  (
( 1  -  T
)  x.  ( A `
 j ) ) )  -  ( T  x.  ( C `  j ) ) )  =  ( ( A `
 j )  -  ( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) ) ) )
5628, 46, 553eqtr2rd 2322 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( A `  j
)  -  ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) ) )  =  ( T  x.  (
( A `  j
)  -  ( C `
 j ) ) ) )
5756oveq1d 5873 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( A `  j )  -  (
( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) ^ 2 )  =  ( ( T  x.  ( ( A `
 j )  -  ( C `  j ) ) ) ^ 2 ) )
58 simp3 957 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  T  e.  CC )
59 subcl 9051 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( A `  j )  -  ( C `  j )
)  e.  CC )
60593adant3 975 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( A `  j
)  -  ( C `
 j ) )  e.  CC )
6158, 60sqmuld 11257 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( T  x.  (
( A `  j
)  -  ( C `
 j ) ) ) ^ 2 )  =  ( ( T ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
6257, 61eqtrd 2315 . . . . 5  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( A `  j )  -  (
( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) ^ 2 )  =  ( ( T ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
6326, 62sylan9eqr 2337 . . . 4  |-  ( ( ( ( A `  j )  e.  CC  /\  ( C `  j
)  e.  CC  /\  T  e.  CC )  /\  ( B `  j
)  =  ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) ) )  -> 
( ( ( A `
 j )  -  ( B `  j ) ) ^ 2 )  =  ( ( T ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
643, 6, 14, 24, 63syl31anc 1185 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( B `
 j ) ) ^ 2 )  =  ( ( T ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
6564sumeq2dv 12176 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( T ^ 2 )  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) ) )
66 fzfid 11035 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1 ... N )  e. 
Fin )
6710resqcld 11271 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  ( T ^ 2 )  e.  RR )
6867recnd 8861 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  ( T ^ 2 )  e.  CC )
6968adantr 451 . . . 4  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( T ^ 2 )  e.  CC )
70693ad2ant3 978 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( T ^ 2 )  e.  CC )
7123adant1 973 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( A `  j )  e.  CC )
72713adant2r 1177 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
7353adant1 973 . . . . . . . 8  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  CC )
74733adant2l 1176 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7572, 74, 59syl2anc 642 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `
 j )  -  ( C `  j ) )  e.  CC )
7675sqcld 11243 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  e.  CC )
77763expa 1151 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( A `  j )  -  ( C `  j )
) ^ 2 )  e.  CC )
78773adantl3 1113 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 )  e.  CC )
7966, 70, 78fsummulc2 12246 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( ( T ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
8065, 79eqtr4d 2318 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  ( ( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   [,]cicc 10659   ...cfz 10782   ^cexp 11104   sum_csu 12158   EEcee 24516
This theorem is referenced by:  ax5seglem3  24559  ax5seglem6  24562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519
  Copyright terms: Public domain W3C validator