Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem2 Structured version   Unicode version

Theorem ax5seglem2 25868
Description: Lemma for ax5seg 25877. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    i, N, j    T, i, j

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1010 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
2 fveecn 25841 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
31, 2sylancom 649 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
4 simpl2r 1011 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  C  e.  ( EE `  N ) )
5 fveecn 25841 . . . . 5  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
64, 5sylancom 649 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7 0re 9091 . . . . . . . . . 10  |-  0  e.  RR
8 1re 9090 . . . . . . . . . 10  |-  1  e.  RR
97, 8elicc2i 10976 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
109simp1bi 972 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
1110recnd 9114 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
1211adantr 452 . . . . . 6  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  ->  T  e.  CC )
13123ad2ant3 980 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  CC )
1413adantr 452 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  T  e.  CC )
15 fveq2 5728 . . . . . . . 8  |-  ( i  =  j  ->  ( B `  i )  =  ( B `  j ) )
16 fveq2 5728 . . . . . . . . . 10  |-  ( i  =  j  ->  ( A `  i )  =  ( A `  j ) )
1716oveq2d 6097 . . . . . . . . 9  |-  ( i  =  j  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( ( 1  -  T )  x.  ( A `  j
) ) )
18 fveq2 5728 . . . . . . . . . 10  |-  ( i  =  j  ->  ( C `  i )  =  ( C `  j ) )
1918oveq2d 6097 . . . . . . . . 9  |-  ( i  =  j  ->  ( T  x.  ( C `  i ) )  =  ( T  x.  ( C `  j )
) )
2017, 19oveq12d 6099 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2115, 20eqeq12d 2450 . . . . . . 7  |-  ( i  =  j  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) )
2221rspccva 3051 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2322adantll 695 . . . . 5  |-  ( ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
24233ad2antl3 1121 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )
25 oveq1 6088 . . . . . 6  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( B `  j
)  -  ( C `
 j ) )  =  ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j )
) )
2625oveq1d 6096 . . . . 5  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( B `  j )  -  ( C `  j )
) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j ) ) ^
2 ) )
27 ax-1cn 9048 . . . . . . . . . . . 12  |-  1  e.  CC
28 subcl 9305 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
2927, 28mpan 652 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
30293ad2ant3 980 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
1  -  T )  e.  CC )
31 simp1 957 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( A `  j )  e.  CC )
3230, 31mulcld 9108 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( A `
 j ) )  e.  CC )
33 simp3 959 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  T  e.  CC )
34 simp2 958 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( C `  j )  e.  CC )
3533, 34mulcld 9108 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( C `  j ) )  e.  CC )
3632, 35, 34addsubassd 9431 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
37 subdi 9467 . . . . . . . . . . 11  |-  ( ( ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
3829, 37syl3an1 1217 . . . . . . . . . 10  |-  ( ( T  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
39383coml 1160 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
40 subdir 9468 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  T  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
4127, 40mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( T  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
4241ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( C `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
43423adant1 975 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
44 mulid2 9089 . . . . . . . . . . . . 13  |-  ( ( C `  j )  e.  CC  ->  (
1  x.  ( C `
 j ) )  =  ( C `  j ) )
4544oveq1d 6096 . . . . . . . . . . . 12  |-  ( ( C `  j )  e.  CC  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
46453ad2ant2 979 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4743, 46eqtrd 2468 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4847oveq2d 6097 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( 1  -  T )  x.  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) ) )
4932, 34, 35subsub2d 9440 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( ( T  x.  ( C `  j )
)  -  ( C `
 j ) ) ) )
5039, 48, 493eqtrd 2472 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
5136, 50eqtr4d 2471 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( 1  -  T )  x.  ( ( A `  j )  -  ( C `  j )
) ) )
5251oveq1d 6096 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T )  x.  ( ( A `
 j )  -  ( C `  j ) ) ) ^ 2 ) )
53 subcl 9305 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( A `  j )  -  ( C `  j )
)  e.  CC )
54533adant3 977 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( A `  j
)  -  ( C `
 j ) )  e.  CC )
5530, 54sqmuld 11535 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  (
( A `  j
)  -  ( C `
 j ) ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5652, 55eqtrd 2468 . . . . 5  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5726, 56sylan9eqr 2490 . . . 4  |-  ( ( ( ( A `  j )  e.  CC  /\  ( C `  j
)  e.  CC  /\  T  e.  CC )  /\  ( B `  j
)  =  ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) ) )  -> 
( ( ( B `
 j )  -  ( C `  j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
583, 6, 14, 24, 57syl31anc 1187 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( B `  j
)  -  ( C `
 j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
5958sumeq2dv 12497 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) ) )
60 fzfid 11312 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1 ... N )  e. 
Fin )
61 resubcl 9365 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
628, 10, 61sylancr 645 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  RR )
6362resqcld 11549 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  RR )
6463recnd 9114 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6564adantr 452 . . . 4  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( ( 1  -  T ) ^ 2 )  e.  CC )
66653ad2ant3 980 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6723adant1 975 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( A `  j )  e.  CC )
68673adant2r 1179 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
6953adant1 975 . . . . . . . 8  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  CC )
70693adant2l 1178 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7168, 70subcld 9411 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `
 j )  -  ( C `  j ) )  e.  CC )
7271sqcld 11521 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  e.  CC )
73723expa 1153 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( A `  j )  -  ( C `  j )
) ^ 2 )  e.  CC )
74733adantl3 1115 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 )  e.  CC )
7560, 66, 74fsummulc2 12567 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
7659, 75eqtr4d 2471 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    <_ cle 9121    - cmin 9291   NNcn 10000   2c2 10049   [,]cicc 10919   ...cfz 11043   ^cexp 11382   sum_csu 12479   EEcee 25827
This theorem is referenced by:  ax5seglem3  25870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-ee 25830
  Copyright terms: Public domain W3C validator