Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem4 Unicode version

Theorem ax5seglem4 24632
Description: Lemma for ax5seg 24638. Given two distinct points, the scaling constant in a betweenness statement is non-zero. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A  =/=  B )  ->  T  =/=  0 )
Distinct variable groups:    A, i    B, i    C, i    i, N    T, i

Proof of Theorem ax5seglem4
StepHypRef Expression
1 oveq2 5882 . . . . . . . . . . 11  |-  ( T  =  0  ->  (
1  -  T )  =  ( 1  -  0 ) )
2 ax-1cn 8811 . . . . . . . . . . . 12  |-  1  e.  CC
32subid1i 9134 . . . . . . . . . . 11  |-  ( 1  -  0 )  =  1
41, 3syl6eq 2344 . . . . . . . . . 10  |-  ( T  =  0  ->  (
1  -  T )  =  1 )
54oveq1d 5889 . . . . . . . . 9  |-  ( T  =  0  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( 1  x.  ( A `  i
) ) )
6 oveq1 5881 . . . . . . . . 9  |-  ( T  =  0  ->  ( T  x.  ( C `  i ) )  =  ( 0  x.  ( C `  i )
) )
75, 6oveq12d 5892 . . . . . . . 8  |-  ( T  =  0  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( C `  i )
) ) )
87eqeq2d 2307 . . . . . . 7  |-  ( T  =  0  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  i )  =  ( ( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) ) ) )
98ralbidv 2576 . . . . . 6  |-  ( T  =  0  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) ) ) )
109biimpac 472 . . . . 5  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  T  =  0 )  ->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( C `  i )
) ) )
11 eqeefv 24603 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
12113adant1 973 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  =  B  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
13123adant3r3 1162 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
14 eqcom 2298 . . . . . . . 8  |-  ( ( ( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) )  =  ( B `  i )  <->  ( B `  i )  =  ( ( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) ) )
15 simplr1 997 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  A  e.  ( EE `  N
) )
16 fveecn 24602 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
1715, 16sylancom 648 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
18 simplr3 999 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  C  e.  ( EE `  N
) )
19 fveecn 24602 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
2018, 19sylancom 648 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( C `  i )  e.  CC )
21 mulid2 8852 . . . . . . . . . . . 12  |-  ( ( A `  i )  e.  CC  ->  (
1  x.  ( A `
 i ) )  =  ( A `  i ) )
22 mul02 9006 . . . . . . . . . . . 12  |-  ( ( C `  i )  e.  CC  ->  (
0  x.  ( C `
 i ) )  =  0 )
2321, 22oveqan12d 5893 . . . . . . . . . . 11  |-  ( ( ( A `  i
)  e.  CC  /\  ( C `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( C `
 i ) ) )  =  ( ( A `  i )  +  0 ) )
24 addid1 9008 . . . . . . . . . . . 12  |-  ( ( A `  i )  e.  CC  ->  (
( A `  i
)  +  0 )  =  ( A `  i ) )
2524adantr 451 . . . . . . . . . . 11  |-  ( ( ( A `  i
)  e.  CC  /\  ( C `  i )  e.  CC )  -> 
( ( A `  i )  +  0 )  =  ( A `
 i ) )
2623, 25eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( A `  i
)  e.  CC  /\  ( C `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( C `
 i ) ) )  =  ( A `
 i ) )
2717, 20, 26syl2anc 642 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) )  =  ( A `  i ) )
2827eqeq1d 2304 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( C `
 i ) ) )  =  ( B `
 i )  <->  ( A `  i )  =  ( B `  i ) ) )
2914, 28syl5rbbr 251 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  =  ( B `
 i )  <->  ( B `  i )  =  ( ( 1  x.  ( A `  i )
)  +  ( 0  x.  ( C `  i ) ) ) ) )
3029ralbidva 2572 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( C `  i )
) ) ) )
3113, 30bitrd 244 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( C `  i )
) ) ) )
3210, 31syl5ibr 212 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  /\  T  =  0 )  ->  A  =  B ) )
3332expdimp 426 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( T  =  0  ->  A  =  B ) )
3433necon3d 2497 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( A  =/=  B  ->  T  =/=  0 ) )
35343impia 1148 1  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A  =/=  B )  ->  T  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   NNcn 9762   ...cfz 10798   EEcee 24588
This theorem is referenced by:  ax5seg  24638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-ee 24591
  Copyright terms: Public domain W3C validator