Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem6 Unicode version

Theorem ax5seglem6 24634
Description: Lemma for ax5seg 24638. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
ax5seglem6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  T  =  S )
Distinct variable groups:    A, i    B, i    C, i    D, i   
i, E    i, F    i, N    S, i    T, i

Proof of Theorem ax5seglem6
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simp3l 983 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  <. A ,  B >.Cgr <. D ,  E >. )
2 simprl1 1000 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  A  e.  ( EE `  N ) )
3 simprl2 1001 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  B  e.  ( EE `  N ) )
4 simprr1 1003 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  D  e.  ( EE `  N ) )
5 simprr2 1004 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  E  e.  ( EE `  N ) )
6 brcgr 24600 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( B `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `
 j )  -  ( E `  j ) ) ^ 2 ) ) )
72, 3, 4, 5, 6syl22anc 1183 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( B `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `
 j )  -  ( E `  j ) ) ^ 2 ) ) )
873ad2ant1 976 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >. 
<-> 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( B `  j ) ) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `
 j )  -  ( E `  j ) ) ^ 2 ) ) )
91, 8mpbid 201 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `  j )  -  ( E `  j )
) ^ 2 ) )
10 simp1l 979 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  N  e.  NN )
1123ad2ant1 976 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  A  e.  ( EE `  N ) )
12 simprl3 1002 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  C  e.  ( EE `  N ) )
13123ad2ant1 976 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  C  e.  ( EE `  N ) )
14 simp22l 1074 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  T  e.  ( 0 [,] 1
) )
15 simp23l 1076 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )
16 ax5seglem1 24628 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  ( ( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
1710, 11, 13, 14, 15, 16syl122anc 1191 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( B `  j ) ) ^
2 )  =  ( ( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
1843ad2ant1 976 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  D  e.  ( EE `  N ) )
19 simprr3 1005 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  ->  F  e.  ( EE `  N ) )
20193ad2ant1 976 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  F  e.  ( EE `  N ) )
21 simp22r 1075 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  S  e.  ( 0 [,] 1
) )
22 simp23r 1077 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  A. i  e.  ( 1 ... N
) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i )
)  +  ( S  x.  ( F `  i ) ) ) )
23 ax5seglem1 24628 . . . . . 6  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( S  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i )
)  +  ( S  x.  ( F `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( D `  j )  -  ( E `  j ) ) ^
2 )  =  ( ( S ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( D `  j )  -  ( F `  j ) ) ^
2 ) ) )
2410, 18, 20, 21, 22, 23syl122anc 1191 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( D `  j )  -  ( E `  j ) ) ^
2 )  =  ( ( S ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( D `  j )  -  ( F `  j ) ) ^
2 ) ) )
259, 17, 243eqtr3d 2336 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( ( T ^ 2 )  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  =  ( ( S ^ 2 )  x.  sum_ j  e.  ( 1 ... N ) ( ( ( D `
 j )  -  ( F `  j ) ) ^ 2 ) ) )
26 simp1rl 1020 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
27 simp1rr 1021 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )
28 simp22 989 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( T  e.  ( 0 [,] 1
)  /\  S  e.  ( 0 [,] 1
) ) )
29 simp23 990 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )
30 simp3r 984 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  <. B ,  C >.Cgr <. E ,  F >. )
31 ax5seglem3 24631 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `  j )  -  ( F `  j )
) ^ 2 ) )
3210, 26, 27, 28, 29, 1, 30, 31syl322anc 1210 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( D `  j )  -  ( F `  j )
) ^ 2 ) )
3332oveq2d 5890 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( ( S ^ 2 )  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  =  ( ( S ^ 2 )  x.  sum_ j  e.  ( 1 ... N ) ( ( ( D `
 j )  -  ( F `  j ) ) ^ 2 ) ) )
3425, 33eqtr4d 2331 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( ( T ^ 2 )  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  =  ( ( S ^ 2 )  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
35 0re 8854 . . . . . . 7  |-  0  e.  RR
36 1re 8853 . . . . . . 7  |-  1  e.  RR
3735, 36elicc2i 10732 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
3837simp1bi 970 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
39 resqcl 11187 . . . . . 6  |-  ( T  e.  RR  ->  ( T ^ 2 )  e.  RR )
4039recnd 8877 . . . . 5  |-  ( T  e.  RR  ->  ( T ^ 2 )  e.  CC )
4114, 38, 403syl 18 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( T ^ 2 )  e.  CC )
4235, 36elicc2i 10732 . . . . . 6  |-  ( S  e.  ( 0 [,] 1 )  <->  ( S  e.  RR  /\  0  <_  S  /\  S  <_  1
) )
4342simp1bi 970 . . . . 5  |-  ( S  e.  ( 0 [,] 1 )  ->  S  e.  RR )
44 resqcl 11187 . . . . . 6  |-  ( S  e.  RR  ->  ( S ^ 2 )  e.  RR )
4544recnd 8877 . . . . 5  |-  ( S  e.  RR  ->  ( S ^ 2 )  e.  CC )
4621, 43, 453syl 18 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( S ^ 2 )  e.  CC )
47 fzfid 11051 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( 1 ... N )  e. 
Fin )
48 fveecn 24602 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
4911, 48sylan 457 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  /\  j  e.  ( 1 ... N
) )  ->  ( A `  j )  e.  CC )
50 fveecn 24602 . . . . . . . 8  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
5113, 50sylan 457 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  CC )
5249, 51subcld 9173 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( A `  j
)  -  ( C `
 j ) )  e.  CC )
5352sqcld 11259 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( A `  j )  -  ( C `  j )
) ^ 2 )  e.  CC )
5447, 53fsumcl 12222 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  e.  CC )
55 simp21 988 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  A  =/=  B )
56 ax5seglem5 24633 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =/=  0
)
5710, 26, 55, 14, 15, 56syl23anc 1189 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =/=  0
)
5841, 46, 54, 57mulcan2d 9418 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( (
( T ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  =  ( ( S ^
2 )  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  <->  ( T ^
2 )  =  ( S ^ 2 ) ) )
5934, 58mpbid 201 . 2  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( T ^ 2 )  =  ( S ^ 2 ) )
6037simp2bi 971 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  0  <_  T )
6138, 60jca 518 . . . 4  |-  ( T  e.  ( 0 [,] 1 )  ->  ( T  e.  RR  /\  0  <_  T ) )
6214, 61syl 15 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( T  e.  RR  /\  0  <_  T ) )
6342simp2bi 971 . . . . 5  |-  ( S  e.  ( 0 [,] 1 )  ->  0  <_  S )
6443, 63jca 518 . . . 4  |-  ( S  e.  ( 0 [,] 1 )  ->  ( S  e.  RR  /\  0  <_  S ) )
6521, 64syl 15 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( S  e.  RR  /\  0  <_  S ) )
66 sq11 11192 . . 3  |-  ( ( ( T  e.  RR  /\  0  <_  T )  /\  ( S  e.  RR  /\  0  <_  S )
)  ->  ( ( T ^ 2 )  =  ( S ^ 2 )  <->  T  =  S
) )
6762, 65, 66syl2anc 642 . 2  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  ( ( T ^ 2 )  =  ( S ^ 2 )  <->  T  =  S
) )
6859, 67mpbid 201 1  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( E `  i )  =  ( ( ( 1  -  S )  x.  ( D `  i ) )  +  ( S  x.  ( F `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) )  ->  T  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   <.cop 3656   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    <_ cle 8884    - cmin 9053   NNcn 9762   2c2 9811   [,]cicc 10675   ...cfz 10798   ^cexp 11120   sum_csu 12174   EEcee 24588  Cgrccgr 24590
This theorem is referenced by:  ax5seg  24638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-cgr 24593
  Copyright terms: Public domain W3C validator