Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem7 Unicode version

Theorem ax5seglem7 25786
Description: Lemma for ax5seg 25789. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.)
Hypotheses
Ref Expression
ax5seglem7.1  |-  A  e.  CC
ax5seglem7.2  |-  T  e.  CC
ax5seglem7.3  |-  C  e.  CC
ax5seglem7.4  |-  D  e.  CC
Assertion
Ref Expression
ax5seglem7  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )

Proof of Theorem ax5seglem7
StepHypRef Expression
1 ax5seglem7.3 . . . . 5  |-  C  e.  CC
2 ax5seglem7.4 . . . . 5  |-  D  e.  CC
31, 2binom2subi 11462 . . . 4  |-  ( ( C  -  D ) ^ 2 )  =  ( ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D )
) )  +  ( D ^ 2 ) )
43oveq2i 6059 . . 3  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( T  x.  (
( ( C ^
2 )  -  (
2  x.  ( C  x.  D ) ) )  +  ( D ^ 2 ) ) )
5 ax5seglem7.2 . . . 4  |-  T  e.  CC
61sqcli 11425 . . . . 5  |-  ( C ^ 2 )  e.  CC
7 2cn 10034 . . . . . 6  |-  2  e.  CC
81, 2mulcli 9059 . . . . . 6  |-  ( C  x.  D )  e.  CC
97, 8mulcli 9059 . . . . 5  |-  ( 2  x.  ( C  x.  D ) )  e.  CC
106, 9subcli 9340 . . . 4  |-  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) )  e.  CC
112sqcli 11425 . . . 4  |-  ( D ^ 2 )  e.  CC
125, 10, 11adddii 9064 . . 3  |-  ( T  x.  ( ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) )  +  ( D ^ 2 ) ) )  =  ( ( T  x.  ( ( C ^
2 )  -  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
135, 6, 9subdii 9446 . . . 4  |-  ( T  x.  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D )
) ) )  =  ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )
1413oveq1i 6058 . . 3  |-  ( ( T  x.  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
154, 12, 143eqtri 2436 . 2  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( C ^
2 ) )  -  ( T  x.  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
16 ax-1cn 9012 . . . . . . . . . . 11  |-  1  e.  CC
1716, 5subcli 9340 . . . . . . . . . 10  |-  ( 1  -  T )  e.  CC
18 ax5seglem7.1 . . . . . . . . . 10  |-  A  e.  CC
1917, 18mulcli 9059 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  A )  e.  CC
2019sqcli 11425 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  e.  CC
215, 1mulcli 9059 . . . . . . . . . . 11  |-  ( T  x.  C )  e.  CC
2221, 2subcli 9340 . . . . . . . . . 10  |-  ( ( T  x.  C )  -  D )  e.  CC
2319, 22mulcli 9059 . . . . . . . . 9  |-  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) )  e.  CC
247, 23mulcli 9059 . . . . . . . 8  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  e.  CC
2520, 24addcli 9058 . . . . . . 7  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  e.  CC
2621sqcli 11425 . . . . . . . 8  |-  ( ( T  x.  C ) ^ 2 )  e.  CC
2726, 11addcli 9058 . . . . . . 7  |-  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) )  e.  CC
2825, 27addcli 9058 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC
2921, 2mulcli 9059 . . . . . . 7  |-  ( ( T  x.  C )  x.  D )  e.  CC
307, 29mulcli 9059 . . . . . 6  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  e.  CC
315, 6mulcli 9059 . . . . . . 7  |-  ( T  x.  ( C ^
2 ) )  e.  CC
325, 11mulcli 9059 . . . . . . 7  |-  ( T  x.  ( D ^
2 ) )  e.  CC
3331, 32addcli 9058 . . . . . 6  |-  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  e.  CC
34 subadd23 9281 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC  /\  ( 2  x.  (
( T  x.  C
)  x.  D ) )  e.  CC  /\  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC )  -> 
( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) ) ) )
3528, 30, 33, 34mp3an 1279 . . . . 5  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )
3635oveq1i 6058 . . . 4  |-  ( ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
3719, 22binom2i 11453 . . . . . . 7  |-  ( ( ( ( 1  -  T )  x.  A
)  +  ( ( T  x.  C )  -  D ) ) ^ 2 )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C )  -  D
) ^ 2 ) )
3819, 21, 2addsubassi 9355 . . . . . . . 8  |-  ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D )  =  ( ( ( 1  -  T )  x.  A )  +  ( ( T  x.  C
)  -  D ) )
3938oveq1i 6058 . . . . . . 7  |-  ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( 1  -  T )  x.  A )  +  ( ( T  x.  C )  -  D
) ) ^ 2 )
4025, 27, 30addsubassi 9355 . . . . . . . 8  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) ) )
4121, 2binom2subi 11462 . . . . . . . . . 10  |-  ( ( ( T  x.  C
)  -  D ) ^ 2 )  =  ( ( ( ( T  x.  C ) ^ 2 )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( D ^ 2 ) )
4226, 11, 30addsubi 9356 . . . . . . . . . 10  |-  ( ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( T  x.  C ) ^ 2 )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( D ^ 2 ) )
4341, 42eqtr4i 2435 . . . . . . . . 9  |-  ( ( ( T  x.  C
)  -  D ) ^ 2 )  =  ( ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )
4443oveq2i 6059 . . . . . . . 8  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C )  -  D ) ^
2 ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) ) )
4540, 44eqtr4i 2435 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C )  -  D
) ^ 2 ) )
4637, 39, 453eqtr4i 2442 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )
4718, 1binom2subi 11462 . . . . . . . . . . . 12  |-  ( ( A  -  C ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )
4847oveq2i 6059 . . . . . . . . . . 11  |-  ( T  x.  ( ( A  -  C ) ^
2 ) )  =  ( T  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) ) )
4918sqcli 11425 . . . . . . . . . . . . 13  |-  ( A ^ 2 )  e.  CC
5018, 1mulcli 9059 . . . . . . . . . . . . . 14  |-  ( A  x.  C )  e.  CC
517, 50mulcli 9059 . . . . . . . . . . . . 13  |-  ( 2  x.  ( A  x.  C ) )  e.  CC
5249, 51subcli 9340 . . . . . . . . . . . 12  |-  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  e.  CC
535, 52, 6adddii 9064 . . . . . . . . . . 11  |-  ( T  x.  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) ) )  =  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^ 2 ) ) )
5448, 53eqtri 2432 . . . . . . . . . 10  |-  ( T  x.  ( ( A  -  C ) ^
2 ) )  =  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^ 2 ) ) )
5518, 2binom2subi 11462 . . . . . . . . . 10  |-  ( ( A  -  D ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  +  ( D ^ 2 ) )
5654, 55oveq12i 6060 . . . . . . . . 9  |-  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  +  ( T  x.  ( C ^ 2 ) ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  +  ( D ^
2 ) ) )
575, 52mulcli 9059 . . . . . . . . . 10  |-  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  e.  CC
5818, 2mulcli 9059 . . . . . . . . . . . 12  |-  ( A  x.  D )  e.  CC
597, 58mulcli 9059 . . . . . . . . . . 11  |-  ( 2  x.  ( A  x.  D ) )  e.  CC
6049, 59subcli 9340 . . . . . . . . . 10  |-  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  e.  CC
6157, 31, 60, 11addsub4i 9360 . . . . . . . . 9  |-  ( ( ( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^
2 ) ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  +  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )
6256, 61eqtri 2432 . . . . . . . 8  |-  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )
6362oveq2i 6059 . . . . . . 7  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( 1  -  T )  x.  (
( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) ) )
6457, 60subcli 9340 . . . . . . . 8  |-  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) )  e.  CC
6531, 11subcli 9340 . . . . . . . 8  |-  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  e.  CC
6617, 64, 65adddii 9064 . . . . . . 7  |-  ( ( 1  -  T )  x.  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) ) )
6716, 5, 65subdiri 9447 . . . . . . . . . 10  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( 1  x.  (
( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )  -  ( T  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )
6865mulid2i 9057 . . . . . . . . . . 11  |-  ( 1  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )
695, 31, 11subdii 9446 . . . . . . . . . . 11  |-  ( T  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) )
7068, 69oveq12i 6060 . . . . . . . . . 10  |-  ( ( 1  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )  -  ( T  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^ 2 ) ) ) )
715, 31mulcli 9059 . . . . . . . . . . . 12  |-  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC
72 subsub3 9297 . . . . . . . . . . . 12  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  e.  CC  /\  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC  /\  ( T  x.  ( D ^
2 ) )  e.  CC )  ->  (
( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7365, 71, 32, 72mp3an 1279 . . . . . . . . . . 11  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )
7431, 32, 11addsubi 9356 . . . . . . . . . . . 12  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( D ^ 2 ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) )
7574oveq1i 6058 . . . . . . . . . . 11  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( D ^
2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )
76 subsub4 9298 . . . . . . . . . . . 12  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC  /\  ( D ^ 2 )  e.  CC  /\  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC )  ->  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( D ^ 2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
7733, 11, 71, 76mp3an 1279 . . . . . . . . . . 11  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( D ^
2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7873, 75, 773eqtr2i 2438 . . . . . . . . . 10  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7967, 70, 783eqtri 2436 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
8079oveq2i 6059 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8117, 64mulcli 9059 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  e.  CC
8211, 71addcli 9058 . . . . . . . . 9  |-  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  e.  CC
83 addsub12 9282 . . . . . . . . 9  |-  ( ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  e.  CC  /\  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC  /\  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  e.  CC )  ->  (
( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
8481, 33, 82, 83mp3an 1279 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8580, 84eqtri 2432 . . . . . . 7  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )
8663, 66, 853eqtri 2436 . . . . . 6  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8746, 86oveq12i 6060 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) ) )
8828, 30subcli 9340 . . . . . 6  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  e.  CC
8981, 82subcli 9340 . . . . . 6  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )  e.  CC
9088, 33, 89addassi 9062 . . . . 5  |-  ( ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
9187, 90eqtr4i 2435 . . . 4  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
9233, 30subcli 9340 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  e.  CC
9328, 89, 92add32i 9248 . . . 4  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )
9436, 91, 933eqtr4i 2442 . . 3  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )
95 subsub2 9293 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC  /\  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) )  e.  CC  /\  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  e.  CC )  ->  ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
9628, 82, 81, 95mp3an 1279 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
9725, 26, 11addassi 9062 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )
9825, 26addcomi 9221 . . . . . . . . . 10  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  =  ( ( ( T  x.  C ) ^
2 )  +  ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) ) )
995, 1sqmuli 11428 . . . . . . . . . . . 12  |-  ( ( T  x.  C ) ^ 2 )  =  ( ( T ^
2 )  x.  ( C ^ 2 ) )
1005sqvali 11424 . . . . . . . . . . . . 13  |-  ( T ^ 2 )  =  ( T  x.  T
)
101100oveq1i 6058 . . . . . . . . . . . 12  |-  ( ( T ^ 2 )  x.  ( C ^
2 ) )  =  ( ( T  x.  T )  x.  ( C ^ 2 ) )
1025, 5, 6mulassi 9063 . . . . . . . . . . . 12  |-  ( ( T  x.  T )  x.  ( C ^
2 ) )  =  ( T  x.  ( T  x.  ( C ^ 2 ) ) )
10399, 101, 1023eqtri 2436 . . . . . . . . . . 11  |-  ( ( T  x.  C ) ^ 2 )  =  ( T  x.  ( T  x.  ( C ^ 2 ) ) )
10417, 18sqmuli 11428 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  =  ( ( ( 1  -  T ) ^
2 )  x.  ( A ^ 2 ) )
10517sqvali 11424 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  T ) ^ 2 )  =  ( ( 1  -  T )  x.  (
1  -  T ) )
106105oveq1i 6058 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
) ^ 2 )  x.  ( A ^
2 ) )  =  ( ( ( 1  -  T )  x.  ( 1  -  T
) )  x.  ( A ^ 2 ) )
10717, 17, 49mulassi 9063 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  T
)  x.  ( 1  -  T ) )  x.  ( A ^
2 ) )  =  ( ( 1  -  T )  x.  (
( 1  -  T
)  x.  ( A ^ 2 ) ) )
10816, 5, 49subdiri 9447 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  -  T )  x.  ( A ^
2 ) )  =  ( ( 1  x.  ( A ^ 2 ) )  -  ( T  x.  ( A ^ 2 ) ) )
10949mulid2i 9057 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  x.  ( A ^
2 ) )  =  ( A ^ 2 )
110109oveq1i 6058 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  x.  ( A ^ 2 ) )  -  ( T  x.  ( A ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) )
111108, 110eqtri 2432 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  T )  x.  ( A ^
2 ) )  =  ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) )
112111oveq2i 6059 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  T )  x.  ( ( 1  -  T )  x.  ( A ^ 2 ) ) )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
113107, 112eqtri 2432 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  ( 1  -  T ) )  x.  ( A ^
2 ) )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
114104, 106, 1133eqtri 2436 . . . . . . . . . . . . . 14  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
1157, 19, 22mul12i 9225 . . . . . . . . . . . . . . 15  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( ( 1  -  T )  x.  A )  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
1167, 22mulcli 9059 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( ( T  x.  C )  -  D ) )  e.  CC
11717, 18, 116mulassi 9063 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  A )  x.  ( 2  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( 1  -  T )  x.  ( A  x.  ( 2  x.  ( ( T  x.  C )  -  D ) ) ) )
11818, 7mulcomi 9060 . . . . . . . . . . . . . . . . . . 19  |-  ( A  x.  2 )  =  ( 2  x.  A
)
119118oveq1i 6058 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  x.  2 )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( 2  x.  A )  x.  (
( T  x.  C
)  -  D ) )
12018, 7, 22mulassi 9063 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  x.  2 )  x.  ( ( T  x.  C )  -  D ) )  =  ( A  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
121119, 120eqtr3i 2434 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( A  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
1227, 18mulcli 9059 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  A )  e.  CC
123122, 21, 2subdii 9446 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( ( 2  x.  A )  x.  ( T  x.  C
) )  -  (
( 2  x.  A
)  x.  D ) )
124122, 5, 1mul12i 9225 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  A )  x.  ( T  x.  C ) )  =  ( T  x.  (
( 2  x.  A
)  x.  C ) )
1257, 18, 1mulassi 9063 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  A )  x.  C )  =  ( 2  x.  ( A  x.  C )
)
126125oveq2i 6059 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  x.  ( ( 2  x.  A )  x.  C ) )  =  ( T  x.  (
2  x.  ( A  x.  C ) ) )
127124, 126eqtri 2432 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  A )  x.  ( T  x.  C ) )  =  ( T  x.  (
2  x.  ( A  x.  C ) ) )
1287, 18, 2mulassi 9063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  A )  x.  D )  =  ( 2  x.  ( A  x.  D )
)
129127, 128oveq12i 6060 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  A
)  x.  ( T  x.  C ) )  -  ( ( 2  x.  A )  x.  D ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
130123, 129eqtri 2432 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
131121, 130eqtr3i 2434 . . . . . . . . . . . . . . . 16  |-  ( A  x.  ( 2  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
132131oveq2i 6059 . . . . . . . . . . . . . . 15  |-  ( ( 1  -  T )  x.  ( A  x.  ( 2  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( 1  -  T )  x.  (
( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) )
133115, 117, 1323eqtri 2436 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( 1  -  T )  x.  (
( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) )
134114, 133oveq12i 6060 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( ( 1  -  T )  x.  ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) ) )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) ) ) )
1355, 49mulcli 9059 . . . . . . . . . . . . . . 15  |-  ( T  x.  ( A ^
2 ) )  e.  CC
13649, 135subcli 9340 . . . . . . . . . . . . . 14  |-  ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  e.  CC
1375, 51mulcli 9059 . . . . . . . . . . . . . . 15  |-  ( T  x.  ( 2  x.  ( A  x.  C
) ) )  e.  CC
138137, 59subcli 9340 . . . . . . . . . . . . . 14  |-  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  e.  CC
13917, 136, 138adddii 9064 . . . . . . . . . . . . 13  |-  ( ( 1  -  T )  x.  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( 2  x.  ( A  x.  C
) ) )  -  ( 2  x.  ( A  x.  D )
) ) ) )
1405, 49, 51subdii 9446 . . . . . . . . . . . . . . . . 17  |-  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  =  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )
141140oveq2i 6059 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )
142140, 57eqeltrri 2483 . . . . . . . . . . . . . . . . 17  |-  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) )  e.  CC
143 sub32 9299 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )  e.  CC  /\  (
2  x.  ( A  x.  D ) )  e.  CC )  -> 
( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) ) )
14449, 142, 59, 143mp3an 1279 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )
145141, 144eqtr4i 2435 . . . . . . . . . . . . . . 15  |-  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )
146 subsub 9295 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( T  x.  ( A ^ 2 ) )  e.  CC  /\  ( T  x.  ( 2  x.  ( A  x.  C ) ) )  e.  CC )  -> 
( ( A ^
2 )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C ) ) ) ) )
14749, 135, 137, 146mp3an 1279 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  -  ( ( T  x.  ( A ^
2 ) )  -  ( T  x.  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )
148147oveq1i 6058 . . . . . . . . . . . . . . 15  |-  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )
149136, 137, 59addsubassi 9355 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) ) )
150145, 148, 1493eqtrri 2437 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) )  +  ( ( T  x.  ( 2  x.  ( A  x.  C
) ) )  -  ( 2  x.  ( A  x.  D )
) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) )
151150oveq2i 6059 . . . . . . . . . . . . 13  |-  ( ( 1  -  T )  x.  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  =  ( ( 1  -  T
)  x.  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) ) )
152134, 139, 1513eqtr2i 2438 . . . . . . . . . . . 12  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( 1  -  T )  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) ) )
15357, 60negsubdi2i 9350 . . . . . . . . . . . . 13  |-  -u (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  -  ( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) ) )
154153oveq2i 6059 . . . . . . . . . . . 12  |-  ( ( 1  -  T )  x.  -u ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  =  ( ( 1  -  T )  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) ) )
15517, 64mulneg2i 9444 . . . . . . . . . . . 12  |-  ( ( 1  -  T )  x.  -u ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  = 
-u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )
156152, 154, 1553eqtr2i 2438 . . . . . . . . . . 11  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  = 
-u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )
157103, 156oveq12i 6060 . . . . . . . . . 10  |-  ( ( ( T  x.  C
) ^ 2 )  +  ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  +  -u (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
15871, 81negsubi 9342 . . . . . . . . . 10  |-  ( ( T  x.  ( T  x.  ( C ^
2 ) ) )  +  -u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) )
15998, 157, 1583eqtri 2436 . . . . . . . . 9  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) )
160159oveq2i 6059 . . . . . . . 8  |-  ( ( D ^ 2 )  +  ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) ) )  =  ( ( D ^
2 )  +  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) ) )
16125, 26addcli 9058 . . . . . . . . 9  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  e.  CC
162161, 11addcomi 9221 . . . . . . . 8  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( D ^
2 )  +  ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) ) )
16311, 71, 81addsubassi 9355 . . . . . . . 8  |-  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) )  =  ( ( D ^ 2 )  +  ( ( T  x.  ( T  x.  ( C ^
2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) ) ) )
164160, 162, 1633eqtr4i 2442 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
16597, 164eqtr3i 2434 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
16682, 81subcli 9340 . . . . . . 7  |-  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) )  e.  CC
16728, 166subeq0i 9344 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) ) )  =  0  <->  ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) ) )
168165, 167mpbir 201 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  0
16996, 168eqtr3i 2434 . . . 4  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )  =  0
1705, 1, 2mulassi 9063 . . . . . . . 8  |-  ( ( T  x.  C )  x.  D )  =  ( T  x.  ( C  x.  D )
)
171170oveq2i 6059 . . . . . . 7  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  =  ( 2  x.  ( T  x.  ( C  x.  D ) ) )
1727, 5, 8mul12i 9225 . . . . . . 7  |-  ( 2  x.  ( T  x.  ( C  x.  D
) ) )  =  ( T  x.  (
2  x.  ( C  x.  D ) ) )
173171, 172eqtri 2432 . . . . . 6  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  =  ( T  x.  (
2  x.  ( C  x.  D ) ) )
174173oveq2i 6059 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( 2  x.  ( C  x.  D ) ) ) )
1755, 9mulcli 9059 . . . . . 6  |-  ( T  x.  ( 2  x.  ( C  x.  D
) ) )  e.  CC
17631, 32, 175addsubi 9356 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( 2  x.  ( C  x.  D ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )
177174, 176eqtri 2432 . . . 4  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )
178169, 177oveq12i 6060 . . 3  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  =  ( 0  +  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) ) )
17931, 175subcli 9340 . . . . 5  |-  ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  e.  CC
180179, 32addcli 9058 . . . 4  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )  e.  CC
181180addid2i 9218 . . 3  |-  ( 0  +  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
18294, 178, 1813eqtri 2436 . 2  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^
2 ) )  -  ( T  x.  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
18315, 182eqtr4i 2435 1  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721  (class class class)co 6048   CCcc 8952   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    - cmin 9255   -ucneg 9256   2c2 10013   ^cexp 11345
This theorem is referenced by:  ax5seglem8  25787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-n0 10186  df-z 10247  df-uz 10453  df-seq 11287  df-exp 11346
  Copyright terms: Public domain W3C validator