Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem7 Unicode version

Theorem ax5seglem7 25305
Description: Lemma for ax5seg 25308. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.)
Hypotheses
Ref Expression
ax5seglem7.1  |-  A  e.  CC
ax5seglem7.2  |-  T  e.  CC
ax5seglem7.3  |-  C  e.  CC
ax5seglem7.4  |-  D  e.  CC
Assertion
Ref Expression
ax5seglem7  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )

Proof of Theorem ax5seglem7
StepHypRef Expression
1 ax5seglem7.3 . . . . 5  |-  C  e.  CC
2 ax5seglem7.4 . . . . 5  |-  D  e.  CC
31, 2binom2subi 11386 . . . 4  |-  ( ( C  -  D ) ^ 2 )  =  ( ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D )
) )  +  ( D ^ 2 ) )
43oveq2i 5992 . . 3  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( T  x.  (
( ( C ^
2 )  -  (
2  x.  ( C  x.  D ) ) )  +  ( D ^ 2 ) ) )
5 ax5seglem7.2 . . . 4  |-  T  e.  CC
61sqcli 11349 . . . . 5  |-  ( C ^ 2 )  e.  CC
7 2cn 9963 . . . . . 6  |-  2  e.  CC
81, 2mulcli 8989 . . . . . 6  |-  ( C  x.  D )  e.  CC
97, 8mulcli 8989 . . . . 5  |-  ( 2  x.  ( C  x.  D ) )  e.  CC
106, 9subcli 9269 . . . 4  |-  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) )  e.  CC
112sqcli 11349 . . . 4  |-  ( D ^ 2 )  e.  CC
125, 10, 11adddii 8994 . . 3  |-  ( T  x.  ( ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) )  +  ( D ^ 2 ) ) )  =  ( ( T  x.  ( ( C ^
2 )  -  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
135, 6, 9subdii 9375 . . . 4  |-  ( T  x.  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D )
) ) )  =  ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )
1413oveq1i 5991 . . 3  |-  ( ( T  x.  ( ( C ^ 2 )  -  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
154, 12, 143eqtri 2390 . 2  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( C ^
2 ) )  -  ( T  x.  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
16 ax-1cn 8942 . . . . . . . . . . 11  |-  1  e.  CC
1716, 5subcli 9269 . . . . . . . . . 10  |-  ( 1  -  T )  e.  CC
18 ax5seglem7.1 . . . . . . . . . 10  |-  A  e.  CC
1917, 18mulcli 8989 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  A )  e.  CC
2019sqcli 11349 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  e.  CC
215, 1mulcli 8989 . . . . . . . . . . 11  |-  ( T  x.  C )  e.  CC
2221, 2subcli 9269 . . . . . . . . . 10  |-  ( ( T  x.  C )  -  D )  e.  CC
2319, 22mulcli 8989 . . . . . . . . 9  |-  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) )  e.  CC
247, 23mulcli 8989 . . . . . . . 8  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  e.  CC
2520, 24addcli 8988 . . . . . . 7  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  e.  CC
2621sqcli 11349 . . . . . . . 8  |-  ( ( T  x.  C ) ^ 2 )  e.  CC
2726, 11addcli 8988 . . . . . . 7  |-  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) )  e.  CC
2825, 27addcli 8988 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC
2921, 2mulcli 8989 . . . . . . 7  |-  ( ( T  x.  C )  x.  D )  e.  CC
307, 29mulcli 8989 . . . . . 6  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  e.  CC
315, 6mulcli 8989 . . . . . . 7  |-  ( T  x.  ( C ^
2 ) )  e.  CC
325, 11mulcli 8989 . . . . . . 7  |-  ( T  x.  ( D ^
2 ) )  e.  CC
3331, 32addcli 8988 . . . . . 6  |-  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  e.  CC
34 subadd23 9210 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC  /\  ( 2  x.  (
( T  x.  C
)  x.  D ) )  e.  CC  /\  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC )  -> 
( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) ) ) )
3528, 30, 33, 34mp3an 1278 . . . . 5  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )
3635oveq1i 5991 . . . 4  |-  ( ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
3719, 22binom2i 11377 . . . . . . 7  |-  ( ( ( ( 1  -  T )  x.  A
)  +  ( ( T  x.  C )  -  D ) ) ^ 2 )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C )  -  D
) ^ 2 ) )
3819, 21, 2addsubassi 9284 . . . . . . . 8  |-  ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D )  =  ( ( ( 1  -  T )  x.  A )  +  ( ( T  x.  C
)  -  D ) )
3938oveq1i 5991 . . . . . . 7  |-  ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( 1  -  T )  x.  A )  +  ( ( T  x.  C )  -  D
) ) ^ 2 )
4025, 27, 30addsubassi 9284 . . . . . . . 8  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) ) )
4121, 2binom2subi 11386 . . . . . . . . . 10  |-  ( ( ( T  x.  C
)  -  D ) ^ 2 )  =  ( ( ( ( T  x.  C ) ^ 2 )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( D ^ 2 ) )
4226, 11, 30addsubi 9285 . . . . . . . . . 10  |-  ( ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( T  x.  C ) ^ 2 )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( D ^ 2 ) )
4341, 42eqtr4i 2389 . . . . . . . . 9  |-  ( ( ( T  x.  C
)  -  D ) ^ 2 )  =  ( ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )
4443oveq2i 5992 . . . . . . . 8  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C )  -  D ) ^
2 ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) ) )
4540, 44eqtr4i 2389 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C )  -  D
) ^ 2 ) )
4637, 39, 453eqtr4i 2396 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )
4718, 1binom2subi 11386 . . . . . . . . . . . 12  |-  ( ( A  -  C ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )
4847oveq2i 5992 . . . . . . . . . . 11  |-  ( T  x.  ( ( A  -  C ) ^
2 ) )  =  ( T  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) ) )
4918sqcli 11349 . . . . . . . . . . . . 13  |-  ( A ^ 2 )  e.  CC
5018, 1mulcli 8989 . . . . . . . . . . . . . 14  |-  ( A  x.  C )  e.  CC
517, 50mulcli 8989 . . . . . . . . . . . . 13  |-  ( 2  x.  ( A  x.  C ) )  e.  CC
5249, 51subcli 9269 . . . . . . . . . . . 12  |-  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  e.  CC
535, 52, 6adddii 8994 . . . . . . . . . . 11  |-  ( T  x.  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) ) )  =  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^ 2 ) ) )
5448, 53eqtri 2386 . . . . . . . . . 10  |-  ( T  x.  ( ( A  -  C ) ^
2 ) )  =  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^ 2 ) ) )
5518, 2binom2subi 11386 . . . . . . . . . 10  |-  ( ( A  -  D ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  +  ( D ^ 2 ) )
5654, 55oveq12i 5993 . . . . . . . . 9  |-  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  +  ( T  x.  ( C ^ 2 ) ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  +  ( D ^
2 ) ) )
575, 52mulcli 8989 . . . . . . . . . 10  |-  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  e.  CC
5818, 2mulcli 8989 . . . . . . . . . . . 12  |-  ( A  x.  D )  e.  CC
597, 58mulcli 8989 . . . . . . . . . . 11  |-  ( 2  x.  ( A  x.  D ) )  e.  CC
6049, 59subcli 9269 . . . . . . . . . 10  |-  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  e.  CC
6157, 31, 60, 11addsub4i 9289 . . . . . . . . 9  |-  ( ( ( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  +  ( T  x.  ( C ^
2 ) ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  +  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )
6256, 61eqtri 2386 . . . . . . . 8  |-  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) )  =  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )
6362oveq2i 5992 . . . . . . 7  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( 1  -  T )  x.  (
( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) ) )
6457, 60subcli 9269 . . . . . . . 8  |-  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) )  e.  CC
6531, 11subcli 9269 . . . . . . . 8  |-  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  e.  CC
6617, 64, 65adddii 8994 . . . . . . 7  |-  ( ( 1  -  T )  x.  ( ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) )  +  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) ) )
6716, 5, 65subdiri 9376 . . . . . . . . . 10  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( 1  x.  (
( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )  -  ( T  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )
6865mulid2i 8987 . . . . . . . . . . 11  |-  ( 1  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )
695, 31, 11subdii 9375 . . . . . . . . . . 11  |-  ( T  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) )
7068, 69oveq12i 5993 . . . . . . . . . 10  |-  ( ( 1  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) ) )  -  ( T  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^ 2 ) ) ) )
715, 31mulcli 8989 . . . . . . . . . . . 12  |-  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC
72 subsub3 9226 . . . . . . . . . . . 12  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  e.  CC  /\  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC  /\  ( T  x.  ( D ^
2 ) )  e.  CC )  ->  (
( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7365, 71, 32, 72mp3an 1278 . . . . . . . . . . 11  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )
7431, 32, 11addsubi 9285 . . . . . . . . . . . 12  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( D ^ 2 ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) )
7574oveq1i 5991 . . . . . . . . . . 11  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( D ^
2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )
76 subsub4 9227 . . . . . . . . . . . 12  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC  /\  ( D ^ 2 )  e.  CC  /\  ( T  x.  ( T  x.  ( C ^ 2 ) ) )  e.  CC )  ->  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( D ^ 2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
7733, 11, 71, 76mp3an 1278 . . . . . . . . . . 11  |-  ( ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( D ^
2 ) )  -  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7873, 75, 773eqtr2i 2392 . . . . . . . . . 10  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( D ^
2 ) )  -  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( T  x.  ( D ^
2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
7967, 70, 783eqtri 2390 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^
2 ) )  -  ( D ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )
8079oveq2i 5992 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8117, 64mulcli 8989 . . . . . . . . 9  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  e.  CC
8211, 71addcli 8988 . . . . . . . . 9  |-  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  e.  CC
83 addsub12 9211 . . . . . . . . 9  |-  ( ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  e.  CC  /\  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  e.  CC  /\  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  e.  CC )  ->  (
( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
8481, 33, 82, 83mp3an 1278 . . . . . . . 8  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8580, 84eqtri 2386 . . . . . . 7  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( C ^ 2 ) )  -  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )
8663, 66, 853eqtri 2390 . . . . . 6  |-  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( ( T  x.  ( C ^
2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
8746, 86oveq12i 5993 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  (
( T  x.  C
)  x.  D ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) ) )
8828, 30subcli 9269 . . . . . 6  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  e.  CC
8981, 82subcli 9269 . . . . . 6  |-  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) )  e.  CC
9088, 33, 89addassi 8992 . . . . 5  |-  ( ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
9187, 90eqtr4i 2389 . . . 4  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) )  +  ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
9233, 30subcli 9269 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  e.  CC
9328, 89, 92add32i 9177 . . . 4  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^
2 ) ) )  -  ( 2  x.  ( ( T  x.  C )  x.  D
) ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )
9436, 91, 933eqtr4i 2396 . . 3  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  -  (
( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )
95 subsub2 9222 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  e.  CC  /\  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) )  e.  CC  /\  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) )  e.  CC )  ->  ( ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) ) )
9628, 82, 81, 95mp3an 1278 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )
9725, 26, 11addassi 8992 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )
9825, 26addcomi 9150 . . . . . . . . . 10  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  =  ( ( ( T  x.  C ) ^
2 )  +  ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) ) )
995, 1sqmuli 11352 . . . . . . . . . . . 12  |-  ( ( T  x.  C ) ^ 2 )  =  ( ( T ^
2 )  x.  ( C ^ 2 ) )
1005sqvali 11348 . . . . . . . . . . . . 13  |-  ( T ^ 2 )  =  ( T  x.  T
)
101100oveq1i 5991 . . . . . . . . . . . 12  |-  ( ( T ^ 2 )  x.  ( C ^
2 ) )  =  ( ( T  x.  T )  x.  ( C ^ 2 ) )
1025, 5, 6mulassi 8993 . . . . . . . . . . . 12  |-  ( ( T  x.  T )  x.  ( C ^
2 ) )  =  ( T  x.  ( T  x.  ( C ^ 2 ) ) )
10399, 101, 1023eqtri 2390 . . . . . . . . . . 11  |-  ( ( T  x.  C ) ^ 2 )  =  ( T  x.  ( T  x.  ( C ^ 2 ) ) )
10417, 18sqmuli 11352 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  =  ( ( ( 1  -  T ) ^
2 )  x.  ( A ^ 2 ) )
10517sqvali 11348 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  T ) ^ 2 )  =  ( ( 1  -  T )  x.  (
1  -  T ) )
106105oveq1i 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
) ^ 2 )  x.  ( A ^
2 ) )  =  ( ( ( 1  -  T )  x.  ( 1  -  T
) )  x.  ( A ^ 2 ) )
10717, 17, 49mulassi 8993 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  T
)  x.  ( 1  -  T ) )  x.  ( A ^
2 ) )  =  ( ( 1  -  T )  x.  (
( 1  -  T
)  x.  ( A ^ 2 ) ) )
10816, 5, 49subdiri 9376 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  -  T )  x.  ( A ^
2 ) )  =  ( ( 1  x.  ( A ^ 2 ) )  -  ( T  x.  ( A ^ 2 ) ) )
10949mulid2i 8987 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  x.  ( A ^
2 ) )  =  ( A ^ 2 )
110109oveq1i 5991 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  x.  ( A ^ 2 ) )  -  ( T  x.  ( A ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) )
111108, 110eqtri 2386 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  T )  x.  ( A ^
2 ) )  =  ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) )
112111oveq2i 5992 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  T )  x.  ( ( 1  -  T )  x.  ( A ^ 2 ) ) )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
113107, 112eqtri 2386 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  ( 1  -  T ) )  x.  ( A ^
2 ) )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
114104, 106, 1133eqtri 2390 . . . . . . . . . . . . . 14  |-  ( ( ( 1  -  T
)  x.  A ) ^ 2 )  =  ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )
1157, 19, 22mul12i 9154 . . . . . . . . . . . . . . 15  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( ( 1  -  T )  x.  A )  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
1167, 22mulcli 8989 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( ( T  x.  C )  -  D ) )  e.  CC
11717, 18, 116mulassi 8993 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  x.  A )  x.  ( 2  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( 1  -  T )  x.  ( A  x.  ( 2  x.  ( ( T  x.  C )  -  D ) ) ) )
11818, 7mulcomi 8990 . . . . . . . . . . . . . . . . . . 19  |-  ( A  x.  2 )  =  ( 2  x.  A
)
119118oveq1i 5991 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  x.  2 )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( 2  x.  A )  x.  (
( T  x.  C
)  -  D ) )
12018, 7, 22mulassi 8993 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  x.  2 )  x.  ( ( T  x.  C )  -  D ) )  =  ( A  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
121119, 120eqtr3i 2388 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( A  x.  (
2  x.  ( ( T  x.  C )  -  D ) ) )
1227, 18mulcli 8989 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  A )  e.  CC
123122, 21, 2subdii 9375 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( ( 2  x.  A )  x.  ( T  x.  C
) )  -  (
( 2  x.  A
)  x.  D ) )
124122, 5, 1mul12i 9154 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  A )  x.  ( T  x.  C ) )  =  ( T  x.  (
( 2  x.  A
)  x.  C ) )
1257, 18, 1mulassi 8993 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  A )  x.  C )  =  ( 2  x.  ( A  x.  C )
)
126125oveq2i 5992 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  x.  ( ( 2  x.  A )  x.  C ) )  =  ( T  x.  (
2  x.  ( A  x.  C ) ) )
127124, 126eqtri 2386 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  A )  x.  ( T  x.  C ) )  =  ( T  x.  (
2  x.  ( A  x.  C ) ) )
1287, 18, 2mulassi 8993 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  A )  x.  D )  =  ( 2  x.  ( A  x.  D )
)
129127, 128oveq12i 5993 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  A
)  x.  ( T  x.  C ) )  -  ( ( 2  x.  A )  x.  D ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
130123, 129eqtri 2386 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  x.  ( ( T  x.  C )  -  D ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
131121, 130eqtr3i 2388 . . . . . . . . . . . . . . . 16  |-  ( A  x.  ( 2  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( T  x.  ( 2  x.  ( A  x.  C )
) )  -  (
2  x.  ( A  x.  D ) ) )
132131oveq2i 5992 . . . . . . . . . . . . . . 15  |-  ( ( 1  -  T )  x.  ( A  x.  ( 2  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( 1  -  T )  x.  (
( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) )
133115, 117, 1323eqtri 2390 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) )  =  ( ( 1  -  T )  x.  (
( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) )
134114, 133oveq12i 5993 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( ( 1  -  T )  x.  ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) ) )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) ) ) )
1355, 49mulcli 8989 . . . . . . . . . . . . . . 15  |-  ( T  x.  ( A ^
2 ) )  e.  CC
13649, 135subcli 9269 . . . . . . . . . . . . . 14  |-  ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  e.  CC
1375, 51mulcli 8989 . . . . . . . . . . . . . . 15  |-  ( T  x.  ( 2  x.  ( A  x.  C
) ) )  e.  CC
138137, 59subcli 9269 . . . . . . . . . . . . . 14  |-  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  e.  CC
13917, 136, 138adddii 8994 . . . . . . . . . . . . 13  |-  ( ( 1  -  T )  x.  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  =  ( ( ( 1  -  T )  x.  (
( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) ) )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( 2  x.  ( A  x.  C
) ) )  -  ( 2  x.  ( A  x.  D )
) ) ) )
1405, 49, 51subdii 9375 . . . . . . . . . . . . . . . . 17  |-  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  =  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )
141140oveq2i 5992 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )
142140, 57eqeltrri 2437 . . . . . . . . . . . . . . . . 17  |-  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) )  e.  CC
143 sub32 9228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )  e.  CC  /\  (
2  x.  ( A  x.  D ) )  e.  CC )  -> 
( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) ) )
14449, 142, 59, 143mp3an 1278 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )
145141, 144eqtr4i 2389 . . . . . . . . . . . . . . 15  |-  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )
146 subsub 9224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( T  x.  ( A ^ 2 ) )  e.  CC  /\  ( T  x.  ( 2  x.  ( A  x.  C ) ) )  e.  CC )  -> 
( ( A ^
2 )  -  (
( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C ) ) ) ) )
14749, 135, 137, 146mp3an 1278 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  -  ( ( T  x.  ( A ^
2 ) )  -  ( T  x.  (
2  x.  ( A  x.  C ) ) ) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )
148147oveq1i 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( A ^ 2 )  -  ( ( T  x.  ( A ^ 2 ) )  -  ( T  x.  ( 2  x.  ( A  x.  C )
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C ) ) ) )  -  ( 2  x.  ( A  x.  D ) ) )
149136, 137, 59addsubassi 9284 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A ^
2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( T  x.  ( 2  x.  ( A  x.  C
) ) ) )  -  ( 2  x.  ( A  x.  D
) ) )  =  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  ( 2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D
) ) ) )
150145, 148, 1493eqtrri 2391 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^
2 ) ) )  +  ( ( T  x.  ( 2  x.  ( A  x.  C
) ) )  -  ( 2  x.  ( A  x.  D )
) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) )
151150oveq2i 5992 . . . . . . . . . . . . 13  |-  ( ( 1  -  T )  x.  ( ( ( A ^ 2 )  -  ( T  x.  ( A ^ 2 ) ) )  +  ( ( T  x.  (
2  x.  ( A  x.  C ) ) )  -  ( 2  x.  ( A  x.  D ) ) ) ) )  =  ( ( 1  -  T
)  x.  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) ) ) )
152134, 139, 1513eqtr2i 2392 . . . . . . . . . . . 12  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  =  ( ( 1  -  T )  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) ) )
15357, 60negsubdi2i 9279 . . . . . . . . . . . . 13  |-  -u (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) )  -  ( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) ) )
154153oveq2i 5992 . . . . . . . . . . . 12  |-  ( ( 1  -  T )  x.  -u ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  =  ( ( 1  -  T )  x.  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) )  -  ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) ) )
15517, 64mulneg2i 9373 . . . . . . . . . . . 12  |-  ( ( 1  -  T )  x.  -u ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  = 
-u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )
156152, 154, 1553eqtr2i 2392 . . . . . . . . . . 11  |-  ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  = 
-u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) )
157103, 156oveq12i 5993 . . . . . . . . . 10  |-  ( ( ( T  x.  C
) ^ 2 )  +  ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  +  -u (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
15871, 81negsubi 9271 . . . . . . . . . 10  |-  ( ( T  x.  ( T  x.  ( C ^
2 ) ) )  +  -u ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) )
15998, 157, 1583eqtri 2390 . . . . . . . . 9  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  =  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) )
160159oveq2i 5992 . . . . . . . 8  |-  ( ( D ^ 2 )  +  ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) ) )  =  ( ( D ^
2 )  +  ( ( T  x.  ( T  x.  ( C ^ 2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) ) )
16125, 26addcli 8988 . . . . . . . . 9  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( T  x.  C ) ^
2 ) )  e.  CC
162161, 11addcomi 9150 . . . . . . . 8  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( D ^
2 )  +  ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) ) )
16311, 71, 81addsubassi 9284 . . . . . . . 8  |-  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) )  =  ( ( D ^ 2 )  +  ( ( T  x.  ( T  x.  ( C ^
2 ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  D ) ) ) ) ) ) )
164160, 162, 1633eqtr4i 2396 . . . . . . 7  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( T  x.  C ) ^ 2 ) )  +  ( D ^
2 ) )  =  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
16597, 164eqtr3i 2388 . . . . . 6  |-  ( ( ( ( ( 1  -  T )  x.  A ) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  ( ( T  x.  C )  -  D
) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) )
16682, 81subcli 9269 . . . . . . 7  |-  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) )  e.  CC
16728, 166subeq0i 9273 . . . . . 6  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  ( ( 1  -  T )  x.  (
( T  x.  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D
) ) ) ) ) ) )  =  0  <->  ( ( ( ( ( 1  -  T )  x.  A
) ^ 2 )  +  ( 2  x.  ( ( ( 1  -  T )  x.  A )  x.  (
( T  x.  C
)  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) )  -  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) ) ) )
168165, 167mpbir 200 . . . . 5  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  -  ( ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) )  -  (
( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) ) ) )  =  0
16996, 168eqtr3i 2388 . . . 4  |-  ( ( ( ( ( ( 1  -  T )  x.  A ) ^
2 )  +  ( 2  x.  ( ( ( 1  -  T
)  x.  A )  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C
) ^ 2 )  +  ( D ^
2 ) ) )  +  ( ( ( 1  -  T )  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) )  -  ( ( A ^
2 )  -  (
2  x.  ( A  x.  D ) ) ) ) )  -  ( ( D ^
2 )  +  ( T  x.  ( T  x.  ( C ^
2 ) ) ) ) ) )  =  0
1705, 1, 2mulassi 8993 . . . . . . . 8  |-  ( ( T  x.  C )  x.  D )  =  ( T  x.  ( C  x.  D )
)
171170oveq2i 5992 . . . . . . 7  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  =  ( 2  x.  ( T  x.  ( C  x.  D ) ) )
1727, 5, 8mul12i 9154 . . . . . . 7  |-  ( 2  x.  ( T  x.  ( C  x.  D
) ) )  =  ( T  x.  (
2  x.  ( C  x.  D ) ) )
173171, 172eqtri 2386 . . . . . 6  |-  ( 2  x.  ( ( T  x.  C )  x.  D ) )  =  ( T  x.  (
2  x.  ( C  x.  D ) ) )
174173oveq2i 5992 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( 2  x.  ( C  x.  D ) ) ) )
1755, 9mulcli 8989 . . . . . 6  |-  ( T  x.  ( 2  x.  ( C  x.  D
) ) )  e.  CC
17631, 32, 175addsubi 9285 . . . . 5  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  ( T  x.  ( 2  x.  ( C  x.  D ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )
177174, 176eqtri 2386 . . . 4  |-  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )
178169, 177oveq12i 5993 . . 3  |-  ( ( ( ( ( ( ( 1  -  T
)  x.  A ) ^ 2 )  +  ( 2  x.  (
( ( 1  -  T )  x.  A
)  x.  ( ( T  x.  C )  -  D ) ) ) )  +  ( ( ( T  x.  C ) ^ 2 )  +  ( D ^ 2 ) ) )  +  ( ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  D )
) ) ) )  -  ( ( D ^ 2 )  +  ( T  x.  ( T  x.  ( C ^ 2 ) ) ) ) ) )  +  ( ( ( T  x.  ( C ^ 2 ) )  +  ( T  x.  ( D ^ 2 ) ) )  -  (
2  x.  ( ( T  x.  C )  x.  D ) ) ) )  =  ( 0  +  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) ) )
17931, 175subcli 9269 . . . . 5  |-  ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  e.  CC
180179, 32addcli 8988 . . . 4  |-  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) )  e.  CC
181180addid2i 9147 . . 3  |-  ( 0  +  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D )
) ) )  +  ( T  x.  ( D ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^ 2 ) )  -  ( T  x.  ( 2  x.  ( C  x.  D
) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
18294, 178, 1813eqtri 2390 . 2  |-  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) )  =  ( ( ( T  x.  ( C ^
2 ) )  -  ( T  x.  (
2  x.  ( C  x.  D ) ) ) )  +  ( T  x.  ( D ^ 2 ) ) )
18315, 182eqtr4i 2389 1  |-  ( T  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1647    e. wcel 1715  (class class class)co 5981   CCcc 8882   0cc0 8884   1c1 8885    + caddc 8887    x. cmul 8889    - cmin 9184   -ucneg 9185   2c2 9942   ^cexp 11269
This theorem is referenced by:  ax5seglem8  25306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-n0 10115  df-z 10176  df-uz 10382  df-seq 11211  df-exp 11270
  Copyright terms: Public domain W3C validator