Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem8 Unicode version

Theorem ax5seglem8 24636
Description: Lemma for ax5seg 24638. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 24635. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem8  |-  ( ( ( A  e.  CC  /\  T  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) ) )

Proof of Theorem ax5seglem8
StepHypRef Expression
1 oveq2 5882 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( 1  -  T )  x.  A
)  =  ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) ) )
21oveq1d 5889 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  =  ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) ) )
32oveq1d 5889 . . . . 5  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
)  =  ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) )
43oveq1d 5889 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( ( 1  -  T
)  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( T  x.  C
) )  -  D
) ^ 2 ) )
5 oveq1 5881 . . . . . . . 8  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  -  C
)  =  ( if ( A  e.  CC ,  A ,  0 )  -  C ) )
65oveq1d 5889 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A  -  C ) ^ 2 )  =  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )
76oveq2d 5890 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( T  x.  (
( A  -  C
) ^ 2 ) )  =  ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) ) )
8 oveq1 5881 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  -  D
)  =  ( if ( A  e.  CC ,  A ,  0 )  -  D ) )
98oveq1d 5889 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A  -  D ) ^ 2 )  =  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) )
107, 9oveq12d 5892 . . . . 5  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) )  =  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) )
1110oveq2d 5890 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( 1  -  T )  x.  (
( T  x.  (
( A  -  C
) ^ 2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
124, 11oveq12d 5892 . . 3  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) )
1312eqeq2d 2307 . 2  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( T  x.  ( ( C  -  D ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) ) )  <-> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) ) )
14 oveq1 5881 . . 3  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) ) )
15 oveq2 5882 . . . . . . . 8  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( 1  -  T
)  =  ( 1  -  if ( T  e.  CC ,  T ,  0 ) ) )
1615oveq1d 5889 . . . . . . 7  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) ) )
17 oveq1 5881 . . . . . . 7  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  C
)  =  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )
1816, 17oveq12d 5892 . . . . . 6  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( T  x.  C
) )  =  ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) ) )
1918oveq1d 5889 . . . . 5  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) )
2019oveq1d 5889 . . . 4  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^
2 ) )
21 oveq1 5881 . . . . . 6  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) ) )
2221oveq1d 5889 . . . . 5  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )
2315, 22oveq12d 5892 . . . 4  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( 1  -  T )  x.  (
( T  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
2420, 23oveq12d 5892 . . 3  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) ) )
2514, 24eqeq12d 2310 . 2  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( T  x.  ( ( C  -  D ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  <->  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) ) ) )
26 oveq1 5881 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( C  -  D
)  =  ( if ( C  e.  CC ,  C ,  0 )  -  D ) )
2726oveq1d 5889 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( C  -  D ) ^ 2 )  =  ( ( if ( C  e.  CC ,  C , 
0 )  -  D
) ^ 2 ) )
2827oveq2d 5890 . . 3  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^ 2 ) )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( C  e.  CC ,  C ,  0 )  -  D ) ^ 2 ) ) )
29 oveq2 5882 . . . . . . 7  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  C )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )
3029oveq2d 5890 . . . . . 6  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  =  ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) ) )
3130oveq1d 5889 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) )
3231oveq1d 5889 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^
2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 ) )
33 oveq2 5882 . . . . . . . 8  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  -  C )  =  ( if ( A  e.  CC ,  A , 
0 )  -  if ( C  e.  CC ,  C ,  0 ) ) )
3433oveq1d 5889 . . . . . . 7  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 )  =  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )
3534oveq2d 5890 . . . . . 6  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) ) )
3635oveq1d 5889 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )
3736oveq2d 5890 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
3832, 37oveq12d 5892 . . 3  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) )
3928, 38eqeq12d 2310 . 2  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) )  <-> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) ) ) )
40 oveq2 5882 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( C  e.  CC ,  C ,  0 )  -  D )  =  ( if ( C  e.  CC ,  C , 
0 )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4140oveq1d 5889 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 )  =  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
4241oveq2d 5890 . . 3  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) )
43 oveq2 5882 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4443oveq1d 5889 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
45 oveq2 5882 . . . . . . 7  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  -  D )  =  ( if ( A  e.  CC ,  A , 
0 )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4645oveq1d 5889 . . . . . 6  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 )  =  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
4746oveq2d 5890 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) )
4847oveq2d 5890 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) )
4944, 48oveq12d 5892 . . 3  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) ) )
5042, 49eqeq12d 2310 . 2  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  <->  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) ) ) )
51 0cn 8847 . . . 4  |-  0  e.  CC
5251elimel 3630 . . 3  |-  if ( A  e.  CC ,  A ,  0 )  e.  CC
5351elimel 3630 . . 3  |-  if ( T  e.  CC ,  T ,  0 )  e.  CC
5451elimel 3630 . . 3  |-  if ( C  e.  CC ,  C ,  0 )  e.  CC
5551elimel 3630 . . 3  |-  if ( D  e.  CC ,  D ,  0 )  e.  CC
5652, 53, 54, 55ax5seglem7 24635 . 2  |-  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) )
5713, 25, 39, 50, 56dedth4h 3622 1  |-  ( ( ( A  e.  CC  /\  T  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ifcif 3578  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   2c2 9811   ^cexp 11120
This theorem is referenced by:  ax5seglem9  24637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator