MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6 Unicode version

Theorem ax6 2086
Description: Rederivation of axiom ax-6 1703 from ax-6o 2076 and other older axioms. See ax6o 1723 for the derivation of ax-6o 2076 from ax-6 1703. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )

Proof of Theorem ax6
StepHypRef Expression
1 ax-5o 2075 . . 3  |-  ( A. x ( A. x  -.  A. x A. x ph  ->  -.  A. x ph )  ->  ( A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
)
2 ax-4 2074 . . . 4  |-  ( A. x  -.  A. x A. x ph  ->  -.  A. x A. x ph )
3 ax-5o 2075 . . . . 5  |-  ( A. x ( A. x ph  ->  A. x ph )  ->  ( A. x ph  ->  A. x A. x ph ) )
4 id 19 . . . . 5  |-  ( A. x ph  ->  A. x ph )
53, 4mpg 1535 . . . 4  |-  ( A. x ph  ->  A. x A. x ph )
62, 5nsyl 113 . . 3  |-  ( A. x  -.  A. x A. x ph  ->  -.  A. x ph )
71, 6mpg 1535 . 2  |-  ( A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
8 ax-6o 2076 . 2  |-  ( -. 
A. x  -.  A. x A. x ph  ->  A. x ph )
97, 8nsyl4 134 1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  hba1-o  2088  ax467  2108  equidq  2114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-4 2074  ax-5o 2075  ax-6o 2076
  Copyright terms: Public domain W3C validator