MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9o Structured version   Unicode version

Theorem ax9o 1954
Description: Show that the original axiom ax-9o 2215 can be derived from ax9 1953 and others. See ax9from9o 2225 for the rederivation of ax9 1953 from ax-9o 2215.

Normally, ax9o 1954 should be used rather than ax-9o 2215, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.)

Assertion
Ref Expression
ax9o  |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ph )

Proof of Theorem ax9o
StepHypRef Expression
1 ax9 1953 . . 3  |-  -.  A. x  -.  x  =  y
2 con3 128 . . . 4  |-  ( ( x  =  y  ->  A. x ph )  -> 
( -.  A. x ph  ->  -.  x  =  y ) )
32al2imi 1570 . . 3  |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ( A. x  -.  A. x ph  ->  A. x  -.  x  =  y ) )
41, 3mtoi 171 . 2  |-  ( A. x ( x  =  y  ->  A. x ph )  ->  -.  A. x  -.  A. x ph )
5 ax6o 1766 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
64, 5syl 16 1  |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1549
This theorem is referenced by:  spimtOLD  1956  cbv1hOLD  1975  equsalOLD  2000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
  Copyright terms: Public domain W3C validator