MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axac2 Unicode version

Theorem axac2 8109
Description: Derive ax-ac2 8105 from ax-ac 8101. (Contributed by NM, 19-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axac2  |-  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Distinct variable group:    x, y, z, v, u

Proof of Theorem axac2
StepHypRef Expression
1 dfac2a 7772 . . . 4  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  -> CHOICE )
2 ac3 8104 . . . 4  |-  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
31, 2mpg 1538 . . 3  |- CHOICE
4 dfackm 7808 . . 3  |-  (CHOICE  <->  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
53, 4mpbi 199 . 2  |-  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
65spi 1750 1  |-  E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1530   E.wex 1531    =/= wne 2459   A.wral 2556   E.wrex 2557   E!wreu 2558   (/)c0 3468  CHOICEwac 7758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-ac 8101
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 6320  df-ac 7759
  Copyright terms: Public domain W3C validator