Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axac3OLD Unicode version

Theorem axac3OLD 8091
 Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac 8085 as an axiom. Obsolete as of 20-Dec-2016. (Contributed by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
axac3OLD CHOICE

Proof of Theorem axac3OLD
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac2a 7756 . 2 CHOICE
2 ac3 8088 . 2
31, 2mpg 1535 1 CHOICE
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358  wex 1528   wcel 1684   wne 2446  wral 2543  wrex 2544  wreu 2545  c0 3455  CHOICEwac 7742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-ac 8085 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 6304  df-ac 7743
 Copyright terms: Public domain W3C validator