MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem2 Structured version   Unicode version

Theorem axacndlem2 8488
Description: Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axacndlem2  |-  ( A. x  x  =  z  ->  E. x A. y A. z ( A. x
( y  e.  z  /\  z  e.  w
)  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )

Proof of Theorem axacndlem2
StepHypRef Expression
1 nfae 2043 . . 3  |-  F/ y A. x  x  =  z
2 nfae 2043 . . . 4  |-  F/ z A. x  x  =  z
3 simpr 449 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  w )  ->  z  e.  w )
43alimi 1569 . . . . 5  |-  ( A. x ( y  e.  z  /\  z  e.  w )  ->  A. x  z  e.  w )
5 nd1 8467 . . . . . 6  |-  ( A. x  x  =  z  ->  -.  A. x  z  e.  w )
65pm2.21d 101 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. x  z  e.  w  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
74, 6syl5 31 . . . 4  |-  ( A. x  x  =  z  ->  ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y
( E. w ( ( y  e.  z  /\  z  e.  w
)  /\  ( y  e.  w  /\  w  e.  x ) )  <->  y  =  w ) ) )
82, 7alrimi 1782 . . 3  |-  ( A. x  x  =  z  ->  A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
91, 8alrimi 1782 . 2  |-  ( A. x  x  =  z  ->  A. y A. z
( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y
( E. w ( ( y  e.  z  /\  z  e.  w
)  /\  ( y  e.  w  /\  w  e.  x ) )  <->  y  =  w ) ) )
10 19.8a 1763 . 2  |-  ( A. y A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) )  ->  E. x A. y A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
119, 10syl 16 1  |-  ( A. x  x  =  z  ->  E. x A. y A. z ( A. x
( y  e.  z  /\  z  e.  w
)  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551
This theorem is referenced by:  axacndlem4  8490  axacnd  8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-reg 7563
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-un 3327  df-nul 3631  df-sn 3822  df-pr 3823
  Copyright terms: Public domain W3C validator