MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Unicode version

Theorem axaddf 8946
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 8952. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8995. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf  |-  +  :
( CC  X.  CC )
--> CC

Proof of Theorem axaddf
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3046 . . . . . . . . 9  |-  E* z 
z  =  <. (
w  +R  u ) ,  ( v  +R  f ) >.
21mosubop 4389 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
32mosubop 4389 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
4 anass 631 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
542exbii 1590 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
6 19.42vv 1919 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
75, 6bitri 241 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
872exbii 1590 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
98mobii 2267 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
103, 9mpbir 201 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
1110moani 2283 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
1211funoprab 6102 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
13 df-add 8927 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
1413funeqi 5407 . . . 4  |-  ( Fun 
+  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) } )
1512, 14mpbir 201 . . 3  |-  Fun  +
1613dmeqi 5004 . . . . 5  |-  dom  +  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) }
17 dmoprabss 6087 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3314 . . . 4  |-  dom  +  C_  ( CC  X.  CC )
19 0ncn 8934 . . . . 5  |-  -.  (/)  e.  CC
20 df-c 8922 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
21 oveq1 6020 . . . . . . . 8  |-  ( <.
z ,  w >.  =  x  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  ( x  +  <. v ,  u >. ) )
2221eleq1d 2446 . . . . . . 7  |-  ( <.
z ,  w >.  =  x  ->  ( ( <. z ,  w >.  + 
<. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  <. v ,  u >. )  e.  ( R.  X.  R. ) ) )
23 oveq2 6021 . . . . . . . 8  |-  ( <.
v ,  u >.  =  y  ->  ( x  +  <. v ,  u >. )  =  ( x  +  y ) )
2423eleq1d 2446 . . . . . . 7  |-  ( <.
v ,  u >.  =  y  ->  ( (
x  +  <. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  y )  e.  ( R.  X.  R. ) ) )
25 addcnsr 8936 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  <. ( z  +R  v ) ,  ( w  +R  u )
>. )
26 addclsr 8884 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
27 addclsr 8884 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
2826, 27anim12i 550 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
2928an4s 800 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
30 opelxpi 4843 . . . . . . . . 9  |-  ( ( ( z  +R  v
)  e.  R.  /\  ( w  +R  u
)  e.  R. )  -> 
<. ( z  +R  v
) ,  ( w  +R  u ) >.  e.  ( R.  X.  R. ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  <. ( z  +R  v ) ,  ( w  +R  u
) >.  e.  ( R. 
X.  R. ) )
3225, 31eqeltrd 2454 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  e.  ( R.  X.  R. ) )
3320, 22, 24, 322optocl 4886 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  ( R. 
X.  R. ) )
3433, 20syl6eleqr 2471 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3519, 34oprssdm 6160 . . . 4  |-  ( CC 
X.  CC )  C_  dom  +
3618, 35eqssi 3300 . . 3  |-  dom  +  =  ( CC  X.  CC )
37 df-fn 5390 . . 3  |-  (  +  Fn  ( CC  X.  CC )  <->  ( Fun  +  /\  dom  +  =  ( CC  X.  CC ) ) )
3815, 36, 37mpbir2an 887 . 2  |-  +  Fn  ( CC  X.  CC )
3934rgen2a 2708 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC
40 ffnov 6106 . 2  |-  (  +  : ( CC  X.  CC ) --> CC  <->  (  +  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC ) )
4138, 39, 40mpbir2an 887 1  |-  +  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E*wmo 2232   A.wral 2642   <.cop 3753    X. cxp 4809   dom cdm 4811   Fun wfun 5381    Fn wfn 5382   -->wf 5383  (class class class)co 6013   {coprab 6014   R.cnr 8668    +R cplr 8672   CCcc 8914    + caddc 8919
This theorem is referenced by:  axaddcl  8952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-omul 6658  df-er 6834  df-ec 6836  df-qs 6840  df-ni 8675  df-pli 8676  df-mi 8677  df-lti 8678  df-plpq 8711  df-mpq 8712  df-ltpq 8713  df-enq 8714  df-nq 8715  df-erq 8716  df-plq 8717  df-mq 8718  df-1nq 8719  df-rq 8720  df-ltnq 8721  df-np 8784  df-plp 8786  df-ltp 8788  df-plpr 8858  df-enr 8860  df-nr 8861  df-plr 8862  df-c 8922  df-add 8927
  Copyright terms: Public domain W3C validator