MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Unicode version

Theorem axcc4 8253
Description: A version of axcc3 8252 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1  |-  A  e. 
_V
axcc4.2  |-  N  ~~  om
axcc4.3  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
axcc4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Distinct variable groups:    A, f, n, x    f, N, n    ph, f    ps, x
Allowed substitution hints:    ph( x, n)    ps( f, n)    N( x)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4  |-  A  e. 
_V
21rabex 4296 . . 3  |-  { x  e.  A  |  ph }  e.  _V
3 axcc4.2 . . 3  |-  N  ~~  om
42, 3axcc3 8252 . 2  |-  E. f
( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
5 rabn0 3591 . . . . . . . . . 10  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
6 pm2.27 37 . . . . . . . . . 10  |-  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
75, 6sylbir 205 . . . . . . . . 9  |-  ( E. x  e.  A  ph  ->  ( ( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
8 axcc4.3 . . . . . . . . . 10  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
98elrab 3036 . . . . . . . . 9  |-  ( ( f `  n )  e.  { x  e.  A  |  ph }  <->  ( ( f `  n
)  e.  A  /\  ps ) )
107, 9syl6ib 218 . . . . . . . 8  |-  ( E. x  e.  A  ph  ->  ( ( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
( f `  n
)  e.  A  /\  ps ) ) )
1110ral2imi 2726 . . . . . . 7  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ( ( f `  n )  e.  A  /\  ps ) ) )
12 simpl 444 . . . . . . . 8  |-  ( ( ( f `  n
)  e.  A  /\  ps )  ->  ( f `
 n )  e.  A )
1312ralimi 2725 . . . . . . 7  |-  ( A. n  e.  N  (
( f `  n
)  e.  A  /\  ps )  ->  A. n  e.  N  ( f `  n )  e.  A
)
1411, 13syl6 31 . . . . . 6  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ( f `  n
)  e.  A ) )
1514anim2d 549 . . . . 5  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) ) )
16 ffnfv 5834 . . . . 5  |-  ( f : N --> A  <->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) )
1715, 16syl6ibr 219 . . . 4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  f : N --> A ) )
18 simpr 448 . . . . . . 7  |-  ( ( ( f `  n
)  e.  A  /\  ps )  ->  ps )
1918ralimi 2725 . . . . . 6  |-  ( A. n  e.  N  (
( f `  n
)  e.  A  /\  ps )  ->  A. n  e.  N  ps )
2011, 19syl6 31 . . . . 5  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ps ) )
2120adantld 454 . . . 4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  A. n  e.  N  ps ) )
2217, 21jcad 520 . . 3  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  ( f : N --> A  /\  A. n  e.  N  ps ) ) )
2322eximdv 1629 . 2  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
244, 23mpi 17 1  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   {crab 2654   _Vcvv 2900   (/)c0 3572   class class class wbr 4154   omcom 4786    Fn wfn 5390   -->wf 5391   ` cfv 5395    ~~ cen 7043
This theorem is referenced by:  axcc4dom  8255  supcvg  12563  1stcelcls  17446  iscmet3  19118  ovoliunlem3  19268  itg2seq  19502  nmounbseqi  22127  nmobndseqi  22129  minvecolem5  22232  heibor  26222
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-2nd 6290  df-er 6842  df-en 7047
  Copyright terms: Public domain W3C validator