Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcontlem12 Unicode version

Theorem axcontlem12 24675
Description: Lemma for axcont 24676. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, b, x    B, b, x, y    N, b, x, y    Z, b, x, y
Allowed substitution hint:    A( y)

Proof of Theorem axcontlem12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 rzal 3568 . . . . . . . . 9  |-  ( B  =  (/)  ->  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
21ralrimivw 2640 . . . . . . . 8  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3 breq1 4042 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b  Btwn  <. x ,  y >.  <->  Z  Btwn  <. x ,  y >. )
)
432ralbidv 2598 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
54rspcev 2897 . . . . . . . . 9  |-  ( ( Z  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
65expcom 424 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>.  ->  ( Z  e.  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
72, 6syl 15 . . . . . . 7  |-  ( B  =  (/)  ->  ( Z  e.  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
87adantld 453 . . . . . 6  |-  ( B  =  (/)  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
98adantld 453 . . . . 5  |-  ( B  =  (/)  ->  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
10 simprrl 740 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
11 simprrr 741 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  e.  ( EE `  N ) )
12 simprll 738 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  u  e.  A
)
13 simpl 443 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  B  =/=  (/) )
1411, 12, 133jca 1132 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( Z  e.  ( EE `  N
)  /\  u  e.  A  /\  B  =/=  (/) ) )
15 simprlr 739 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  =/=  u
)
16 axcontlem11 24674 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  u  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  u ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1710, 14, 15, 16syl12anc 1180 . . . . . 6  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1817ex 423 . . . . 5  |-  ( B  =/=  (/)  ->  ( (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
199, 18pm2.61ine 2535 . . . 4  |-  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
2019ex 423 . . 3  |-  ( ( u  e.  A  /\  Z  =/=  u )  -> 
( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
2120rexlimiva 2675 . 2  |-  ( E. u  e.  A  Z  =/=  u  ->  ( (
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
22 df-ne 2461 . . . . . 6  |-  ( Z  =/=  u  <->  -.  Z  =  u )
2322con2bii 322 . . . . 5  |-  ( Z  =  u  <->  -.  Z  =/=  u )
2423ralbii 2580 . . . 4  |-  ( A. u  e.  A  Z  =  u  <->  A. u  e.  A  -.  Z  =/=  u
)
25 ralnex 2566 . . . 4  |-  ( A. u  e.  A  -.  Z  =/=  u  <->  -.  E. u  e.  A  Z  =/=  u )
2624, 25bitri 240 . . 3  |-  ( A. u  e.  A  Z  =  u  <->  -.  E. u  e.  A  Z  =/=  u )
27 simpr3 963 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. )
28 eqeq2 2305 . . . . . . . . . . 11  |-  ( u  =  x  ->  ( Z  =  u  <->  Z  =  x ) )
2928rspccva 2896 . . . . . . . . . 10  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  Z  =  x )
30 opeq1 3812 . . . . . . . . . . . . 13  |-  ( Z  =  x  ->  <. Z , 
y >.  =  <. x ,  y >. )
3130breq2d 4051 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  x  Btwn  <. x ,  y >. ) )
32 breq1 4042 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  ( Z  Btwn  <. x ,  y
>. 
<->  x  Btwn  <. x ,  y >. ) )
3331, 32bitr4d 247 . . . . . . . . . . 11  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  Z  Btwn  <. x ,  y >. ) )
3433ralbidv 2576 . . . . . . . . . 10  |-  ( Z  =  x  ->  ( A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3529, 34syl 15 . . . . . . . . 9  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  ( A. y  e.  B  x  Btwn  <. Z , 
y >. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3635ralbidva 2572 . . . . . . . 8  |-  ( A. u  e.  A  Z  =  u  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3736biimpa 470 . . . . . . 7  |-  ( ( A. u  e.  A  Z  =  u  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3827, 37sylan2 460 . . . . . 6  |-  ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )
3938, 5sylan2 460 . . . . 5  |-  ( ( Z  e.  ( EE
`  N )  /\  ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
4039ancoms 439 . . . 4  |-  ( ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
4140expl 601 . . 3  |-  ( A. u  e.  A  Z  =  u  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4226, 41sylbir 204 . 2  |-  ( -. 
E. u  e.  A  Z  =/=  u  ->  (
( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4321, 42pm2.61i 156 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589
This theorem is referenced by:  axcont  24676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-z 10041  df-uz 10247  df-ico 10678  df-icc 10679  df-fz 10799  df-ee 24591  df-btwn 24592
  Copyright terms: Public domain W3C validator