Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcontlem3 Structured version   Unicode version

Theorem axcontlem3 25910
Description: Lemma for axcont 25920. Given the separation assumption,  B is a subset of  D. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypothesis
Ref Expression
axcontlem3.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
Assertion
Ref Expression
axcontlem3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
Distinct variable groups:    A, p, x    B, p, x, y    N, p, x, y    U, p, x, y    Z, p, x, y
Allowed substitution hints:    A( y)    D( x, y, p)

Proof of Theorem axcontlem3
StepHypRef Expression
1 simplr2 1001 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  ( EE `  N ) )
2 simpr2 965 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  U  e.  A )
32anim1i 553 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  ( U  e.  A  /\  p  e.  B
) )
4 simplr3 1002 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
54adantr 453 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
6 breq1 4218 . . . . . 6  |-  ( x  =  U  ->  (
x  Btwn  <. Z , 
y >. 
<->  U  Btwn  <. Z , 
y >. ) )
7 opeq2 3987 . . . . . . 7  |-  ( y  =  p  ->  <. Z , 
y >.  =  <. Z ,  p >. )
87breq2d 4227 . . . . . 6  |-  ( y  =  p  ->  ( U  Btwn  <. Z ,  y
>. 
<->  U  Btwn  <. Z ,  p >. ) )
96, 8rspc2v 3060 . . . . 5  |-  ( ( U  e.  A  /\  p  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z , 
y >.  ->  U  Btwn  <. Z ,  p >. ) )
103, 5, 9sylc 59 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  U  Btwn  <. Z ,  p >. )
1110orcd 383 . . 3  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) )
1211ralrimiva 2791 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) )
13 axcontlem3.1 . . . 4  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
1413sseq2i 3375 . . 3  |-  ( B 
C_  D  <->  B  C_  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) } )
15 ssrab 3423 . . 3  |-  ( B 
C_  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  <->  ( B  C_  ( EE `  N
)  /\  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) ) )
1614, 15bitri 242 . 2  |-  ( B 
C_  D  <->  ( B  C_  ( EE `  N
)  /\  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) ) )
171, 12, 16sylanbrc 647 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   {crab 2711    C_ wss 3322   <.cop 3819   class class class wbr 4215   ` cfv 5457   NNcn 10005   EEcee 25832    Btwn cbtwn 25833
This theorem is referenced by:  axcontlem9  25916  axcontlem10  25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216
  Copyright terms: Public domain W3C validator