Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcontlem9 Structured version   Unicode version

Theorem axcontlem9 25876
Description: Lemma for axcont 25880. Given the separation assumption, all values of  F over  A are less than or equal to all values of  F over  B. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem9.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem9.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Distinct variable groups:    A, m, n, p, x    B, m, n, p, x, y   
t, D, x    i, F    m, F    t, F    i, p, t, x, N   
m, N, n, p   
t, N, x    y, N    U, i    U, m, n, p    t, U, x    y, U    i, Z    m, Z, n, p   
t, Z, x    y, Z    F, p
Allowed substitution hints:    A( y, t, i)    B( t, i)    D( y, i, m, n, p)    F( x, y, n)

Proof of Theorem axcontlem9
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  N  e.  NN )
2 simprl1 1002 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  e.  ( EE `  N ) )
3 simplr1 999 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  ( EE `  N ) )
4 simprl2 1003 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  A
)
53, 4sseldd 3341 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  ( EE `  N ) )
6 simprr 734 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  =/=  U
)
7 axcontlem9.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
8 axcontlem9.2 . . . . . 6  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
97, 8axcontlem2 25869 . . . . 5  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,)  +oo ) )
101, 2, 5, 6, 9syl31anc 1187 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-onto-> (
0 [,)  +oo ) )
11 f1ofun 5668 . . . 4  |-  ( F : D -1-1-onto-> ( 0 [,)  +oo )  ->  Fun  F )
12 fvelima 5770 . . . . 5  |-  ( ( Fun  F  /\  n  e.  ( F " A
) )  ->  E. a  e.  A  ( F `  a )  =  n )
1312ex 424 . . . 4  |-  ( Fun 
F  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
1410, 11, 133syl 19 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
15 fvelima 5770 . . . . 5  |-  ( ( Fun  F  /\  m  e.  ( F " B
) )  ->  E. b  e.  B  ( F `  b )  =  m )
1615ex 424 . . . 4  |-  ( Fun 
F  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
1710, 11, 163syl 19 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
18 reeanv 2867 . . . 4  |-  ( E. a  e.  A  E. b  e.  B  (
( F `  a
)  =  n  /\  ( F `  b )  =  m )  <->  ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m ) )
19 simplr3 1001 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
20 breq1 4207 . . . . . . . . 9  |-  ( x  =  a  ->  (
x  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
y >. ) )
21 opeq2 3977 . . . . . . . . . 10  |-  ( y  =  b  ->  <. Z , 
y >.  =  <. Z , 
b >. )
2221breq2d 4216 . . . . . . . . 9  |-  ( y  =  b  ->  (
a  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
b >. ) )
2320, 22rspc2v 3050 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z , 
y >.  ->  a  Btwn  <. Z ,  b >. ) )
2419, 23mpan9 456 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  a  Btwn  <. Z ,  b
>. )
25 simplll 735 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  N  e.  NN )
262adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  e.  ( EE `  N
) )
275adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  U  e.  ( EE `  N
) )
2825, 26, 273jca 1134 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) ) )
29 simplrr 738 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  =/=  U )
307axcontlem4 25871 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  D
)
3130sseld 3339 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( a  e.  A  ->  a  e.  D ) )
32 simpl 444 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
337axcontlem3 25870 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
3432, 2, 4, 6, 33syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  D
)
3534sseld 3339 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( b  e.  B  ->  b  e.  D ) )
3631, 35anim12d 547 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  e.  D  /\  b  e.  D )
) )
3736imp 419 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  e.  D  /\  b  e.  D )
)
387, 8axcontlem7 25874 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
a  e.  D  /\  b  e.  D )
)  ->  ( a  Btwn  <. Z ,  b
>. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
3928, 29, 37, 38syl21anc 1183 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  Btwn  <. Z , 
b >. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
4024, 39mpbid 202 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( F `  a )  <_  ( F `  b
) )
41 breq12 4209 . . . . . 6  |-  ( ( ( F `  a
)  =  n  /\  ( F `  b )  =  m )  -> 
( ( F `  a )  <_  ( F `  b )  <->  n  <_  m ) )
4240, 41syl5ibcom 212 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4342rexlimdvva 2829 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( E. a  e.  A  E. b  e.  B  ( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4418, 43syl5bir 210 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m )  ->  n  <_  m ) )
4514, 17, 44syl2and 470 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( n  e.  ( F " A )  /\  m  e.  ( F " B
) )  ->  n  <_  m ) )
4645ralrimivv 2789 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   <.cop 3809   class class class wbr 4204   {copab 4257   "cima 4873   Fun wfun 5440   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    +oocpnf 9107    <_ cle 9111    - cmin 9281   NNcn 9990   [,)cico 10908   ...cfz 11033   EEcee 25792    Btwn cbtwn 25793
This theorem is referenced by:  axcontlem10  25877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-z 10273  df-uz 10479  df-ico 10912  df-icc 10913  df-fz 11034  df-ee 25795  df-btwn 25796
  Copyright terms: Public domain W3C validator