Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcontlem9 Unicode version

Theorem axcontlem9 25627
Description: Lemma for axcont 25631. Given the separation assumption, all values of  F over  A are less than or equal to all values of  F over  B. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem9.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem9.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Distinct variable groups:    A, m, n, p, x    B, m, n, p, x, y   
t, D, x    i, F    m, F    t, F    i, p, t, x, N   
m, N, n, p   
t, N, x    y, N    U, i    U, m, n, p    t, U, x    y, U    i, Z    m, Z, n, p   
t, Z, x    y, Z    F, p
Allowed substitution hints:    A( y, t, i)    B( t, i)    D( y, i, m, n, p)    F( x, y, n)

Proof of Theorem axcontlem9
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  N  e.  NN )
2 simprl1 1002 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  e.  ( EE `  N ) )
3 simplr1 999 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  ( EE `  N ) )
4 simprl2 1003 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  A
)
53, 4sseldd 3294 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  ( EE `  N ) )
6 simprr 734 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  =/=  U
)
7 axcontlem9.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
8 axcontlem9.2 . . . . . 6  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
97, 8axcontlem2 25620 . . . . 5  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,)  +oo ) )
101, 2, 5, 6, 9syl31anc 1187 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-onto-> (
0 [,)  +oo ) )
11 f1ofun 5618 . . . 4  |-  ( F : D -1-1-onto-> ( 0 [,)  +oo )  ->  Fun  F )
12 fvelima 5719 . . . . 5  |-  ( ( Fun  F  /\  n  e.  ( F " A
) )  ->  E. a  e.  A  ( F `  a )  =  n )
1312ex 424 . . . 4  |-  ( Fun 
F  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
1410, 11, 133syl 19 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
15 fvelima 5719 . . . . 5  |-  ( ( Fun  F  /\  m  e.  ( F " B
) )  ->  E. b  e.  B  ( F `  b )  =  m )
1615ex 424 . . . 4  |-  ( Fun 
F  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
1710, 11, 163syl 19 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
18 reeanv 2820 . . . 4  |-  ( E. a  e.  A  E. b  e.  B  (
( F `  a
)  =  n  /\  ( F `  b )  =  m )  <->  ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m ) )
19 simplr3 1001 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
20 breq1 4158 . . . . . . . . 9  |-  ( x  =  a  ->  (
x  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
y >. ) )
21 opeq2 3929 . . . . . . . . . 10  |-  ( y  =  b  ->  <. Z , 
y >.  =  <. Z , 
b >. )
2221breq2d 4167 . . . . . . . . 9  |-  ( y  =  b  ->  (
a  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
b >. ) )
2320, 22rspc2v 3003 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z , 
y >.  ->  a  Btwn  <. Z ,  b >. ) )
2419, 23mpan9 456 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  a  Btwn  <. Z ,  b
>. )
25 simplll 735 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  N  e.  NN )
262adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  e.  ( EE `  N
) )
275adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  U  e.  ( EE `  N
) )
2825, 26, 273jca 1134 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) ) )
29 simplrr 738 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  =/=  U )
307axcontlem4 25622 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  D
)
3130sseld 3292 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( a  e.  A  ->  a  e.  D ) )
32 simpl 444 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
337axcontlem3 25621 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
3432, 2, 4, 6, 33syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  D
)
3534sseld 3292 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( b  e.  B  ->  b  e.  D ) )
3631, 35anim12d 547 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  e.  D  /\  b  e.  D )
) )
3736imp 419 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  e.  D  /\  b  e.  D )
)
387, 8axcontlem7 25625 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
a  e.  D  /\  b  e.  D )
)  ->  ( a  Btwn  <. Z ,  b
>. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
3928, 29, 37, 38syl21anc 1183 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  Btwn  <. Z , 
b >. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
4024, 39mpbid 202 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( F `  a )  <_  ( F `  b
) )
41 breq12 4160 . . . . . 6  |-  ( ( ( F `  a
)  =  n  /\  ( F `  b )  =  m )  -> 
( ( F `  a )  <_  ( F `  b )  <->  n  <_  m ) )
4240, 41syl5ibcom 212 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4342rexlimdvva 2782 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( E. a  e.  A  E. b  e.  B  ( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4418, 43syl5bir 210 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m )  ->  n  <_  m ) )
4514, 17, 44syl2and 470 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( n  e.  ( F " A )  /\  m  e.  ( F " B
) )  ->  n  <_  m ) )
4645ralrimivv 2742 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   E.wrex 2652   {crab 2655    C_ wss 3265   (/)c0 3573   <.cop 3762   class class class wbr 4155   {copab 4208   "cima 4823   Fun wfun 5390   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022   0cc0 8925   1c1 8926    + caddc 8928    x. cmul 8930    +oocpnf 9052    <_ cle 9056    - cmin 9225   NNcn 9934   [,)cico 10852   ...cfz 10977   EEcee 25543    Btwn cbtwn 25544
This theorem is referenced by:  axcontlem10  25628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-z 10217  df-uz 10423  df-ico 10856  df-icc 10857  df-fz 10978  df-ee 25546  df-btwn 25547
  Copyright terms: Public domain W3C validator