Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextdfeq Unicode version

Theorem axextdfeq 24154
Description: A version of ax-ext 2264 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.)
Assertion
Ref Expression
axextdfeq  |-  E. z
( ( z  e.  x  ->  z  e.  y )  ->  (
( z  e.  y  ->  z  e.  x
)  ->  ( x  e.  w  ->  y  e.  w ) ) )

Proof of Theorem axextdfeq
StepHypRef Expression
1 axextnd 8213 . . 3  |-  E. z
( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
2 ax-13 1686 . . . . 5  |-  ( x  =  y  ->  (
x  e.  w  -> 
y  e.  w ) )
32imim2i 13 . . . 4  |-  ( ( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )  ->  ( ( z  e.  x  <->  z  e.  y )  ->  ( x  e.  w  ->  y  e.  w ) ) )
43eximi 1563 . . 3  |-  ( E. z ( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )  ->  E. z ( ( z  e.  x  <->  z  e.  y )  ->  (
x  e.  w  -> 
y  e.  w ) ) )
51, 4ax-mp 8 . 2  |-  E. z
( ( z  e.  x  <->  z  e.  y )  ->  ( x  e.  w  ->  y  e.  w ) )
6 biimpexp 24070 . . 3  |-  ( ( ( z  e.  x  <->  z  e.  y )  -> 
( x  e.  w  ->  y  e.  w ) )  <->  ( ( z  e.  x  ->  z  e.  y )  ->  (
( z  e.  y  ->  z  e.  x
)  ->  ( x  e.  w  ->  y  e.  w ) ) ) )
76exbii 1569 . 2  |-  ( E. z ( ( z  e.  x  <->  z  e.  y )  ->  (
x  e.  w  -> 
y  e.  w ) )  <->  E. z ( ( z  e.  x  -> 
z  e.  y )  ->  ( ( z  e.  y  ->  z  e.  x )  ->  (
x  e.  w  -> 
y  e.  w ) ) ) )
85, 7mpbi 199 1  |-  E. z
( ( z  e.  x  ->  z  e.  y )  ->  (
( z  e.  y  ->  z  e.  x
)  ->  ( x  e.  w  ->  y  e.  w ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   E.wex 1528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408
  Copyright terms: Public domain W3C validator