Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextdist Unicode version

Theorem axextdist 24227
Description: ax-ext 2277 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
axextdist  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y ) )

Proof of Theorem axextdist
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfnae 1909 . . . 4  |-  F/ z  -.  A. z  z  =  x
2 nfnae 1909 . . . 4  |-  F/ z  -.  A. z  z  =  y
31, 2nfan 1783 . . 3  |-  F/ z ( -.  A. z 
z  =  x  /\  -.  A. z  z  =  y )
4 nfcvd 2433 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/_ z w )
5 nfcvf 2454 . . . . . 6  |-  ( -. 
A. z  z  =  x  ->  F/_ z x )
65adantr 451 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/_ z x )
74, 6nfeld 2447 . . . 4  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  w  e.  x )
8 nfcvf 2454 . . . . . 6  |-  ( -. 
A. z  z  =  y  ->  F/_ z y )
98adantl 452 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/_ z y )
104, 9nfeld 2447 . . . 4  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  w  e.  y )
117, 10nfbid 1774 . . 3  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z
( w  e.  x  <->  w  e.  y ) )
12 elequ1 1699 . . . . 5  |-  ( w  =  z  ->  (
w  e.  x  <->  z  e.  x ) )
13 elequ1 1699 . . . . 5  |-  ( w  =  z  ->  (
w  e.  y  <->  z  e.  y ) )
1412, 13bibi12d 312 . . . 4  |-  ( w  =  z  ->  (
( w  e.  x  <->  w  e.  y )  <->  ( z  e.  x  <->  z  e.  y ) ) )
1514a1i 10 . . 3  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( w  =  z  ->  ( ( w  e.  x  <->  w  e.  y )  <->  ( z  e.  x  <->  z  e.  y ) ) ) )
163, 11, 15cbvald 1961 . 2  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( A. w ( w  e.  x  <->  w  e.  y
)  <->  A. z ( z  e.  x  <->  z  e.  y ) ) )
17 axext3 2279 . 2  |-  ( A. w ( w  e.  x  <->  w  e.  y
)  ->  x  =  y )
1816, 17syl6bir 220 1  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   F/_wnfc 2419
This theorem is referenced by:  axext4dist  24228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-cleq 2289  df-clel 2292  df-nfc 2421
  Copyright terms: Public domain W3C validator