Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Unicode version

Theorem axextprim 24062
 Description: ax-ext 2277 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 8229 . 2
2 dfbi2 609 . . . . . 6
32imbi1i 315 . . . . 5
4 impexp 433 . . . . 5
53, 4bitri 240 . . . 4
65exbii 1572 . . 3
7 df-ex 1532 . . 3
86, 7bitri 240 . 2
91, 8mpbi 199 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1530  wex 1531 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-cleq 2289  df-clel 2292  df-nfc 2421
 Copyright terms: Public domain W3C validator