MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth2 Unicode version

Theorem axgroth2 8447
Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.)
Assertion
Ref Expression
axgroth2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth2
StepHypRef Expression
1 ax-groth 8445 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y ) ) )
2 vex 2791 . . . . . . . . . 10  |-  y  e. 
_V
3 ssdomg 6907 . . . . . . . . . 10  |-  ( y  e.  _V  ->  (
z  C_  y  ->  z  ~<_  y ) )
42, 3ax-mp 8 . . . . . . . . 9  |-  ( z 
C_  y  ->  z  ~<_  y )
54biantrurd 494 . . . . . . . 8  |-  ( z 
C_  y  ->  (
y  ~<_  z  <->  ( z  ~<_  y  /\  y  ~<_  z ) ) )
6 sbthb 6982 . . . . . . . 8  |-  ( ( z  ~<_  y  /\  y  ~<_  z )  <->  z  ~~  y )
75, 6syl6bb 252 . . . . . . 7  |-  ( z 
C_  y  ->  (
y  ~<_  z  <->  z  ~~  y ) )
87orbi1d 683 . . . . . 6  |-  ( z 
C_  y  ->  (
( y  ~<_  z  \/  z  e.  y )  <-> 
( z  ~~  y  \/  z  e.  y
) ) )
98pm5.74i 236 . . . . 5  |-  ( ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) )  <->  ( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y ) ) )
109albii 1553 . . . 4  |-  ( A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) )  <->  A. z
( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y
) ) )
11103anbi3i 1144 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y
) ) ) )
1211exbii 1569 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y ) ) ) )
131, 12mpbir 200 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1527   E.wex 1528    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    ~~ cen 6860    ~<_ cdom 6861
This theorem is referenced by:  axgroth3  8453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-groth 8445
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6660  df-en 6864  df-dom 6865
  Copyright terms: Public domain W3C validator