MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Unicode version

Theorem axgroth4 8667
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 8299 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth4
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 axgroth3 8666 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
2 elequ2 1726 . . . . . . . . . 10  |-  ( w  =  v  ->  (
u  e.  w  <->  u  e.  v ) )
32imbi2d 308 . . . . . . . . 9  |-  ( w  =  v  ->  (
( u  C_  z  ->  u  e.  w )  <-> 
( u  C_  z  ->  u  e.  v ) ) )
43albidv 1632 . . . . . . . 8  |-  ( w  =  v  ->  ( A. u ( u  C_  z  ->  u  e.  w
)  <->  A. u ( u 
C_  z  ->  u  e.  v ) ) )
54cbvrexv 2897 . . . . . . 7  |-  ( E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
)  <->  E. v  e.  y 
A. u ( u 
C_  z  ->  u  e.  v ) )
65anbi2i 676 . . . . . 6  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
7 r19.42v 2826 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
8 sseq1 3333 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  C_  z  <->  w  C_  z
) )
9 elequ1 1724 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  e.  v  <->  w  e.  v ) )
108, 9imbi12d 312 . . . . . . . . . 10  |-  ( u  =  w  ->  (
( u  C_  z  ->  u  e.  v )  <-> 
( w  C_  z  ->  w  e.  v ) ) )
1110cbvalv 2056 . . . . . . . . 9  |-  ( A. u ( u  C_  z  ->  u  e.  v )  <->  A. w ( w 
C_  z  ->  w  e.  v ) )
1211anbi2i 676 . . . . . . . 8  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w
( w  C_  z  ->  w  e.  v ) ) )
13 19.26 1600 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <-> 
( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w ( w  C_  z  ->  w  e.  v ) ) )
14 pm4.76 837 . . . . . . . . . 10  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
15 elin 3494 . . . . . . . . . . 11  |-  ( w  e.  ( y  i^i  v )  <->  ( w  e.  y  /\  w  e.  v ) )
1615imbi2i 304 . . . . . . . . . 10  |-  ( ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
1714, 16bitr4i 244 . . . . . . . . 9  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  w  e.  ( y  i^i  v
) ) )
1817albii 1572 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <->  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
1912, 13, 183bitr2i 265 . . . . . . 7  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2019rexbii 2695 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
216, 7, 203bitr2i 265 . . . . 5  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2221ralbii 2694 . . . 4  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  <->  A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) ) )
23223anbi2i 1145 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) ) )
2423exbii 1589 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )
251, 24mpbi 200 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    e. wcel 1721   A.wral 2670   E.wrex 2671    \ cdif 3281    i^i cin 3283    C_ wss 3284   class class class wbr 4176    ~<_ cdom 7070
This theorem is referenced by:  grothprim  8669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-reg 7520  ax-inf2 7556  ax-cc 8275  ax-groth 8658
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-oi 7439  df-card 7786  df-cda 8008
  Copyright terms: Public domain W3C validator