MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Unicode version

Theorem axgroth6 8704
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set  x, there exists a set  y containing  x, the subsets of the members of  y, the power sets of the members of  y, and the subsets of  y of cardinality less than that of  y. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
Distinct variable group:    x, y, z

Proof of Theorem axgroth6
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 8700 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
2 biid 229 . . . 4  |-  ( x  e.  y  <->  x  e.  y )
3 pweq 3803 . . . . . . . . 9  |-  ( z  =  v  ->  ~P z  =  ~P v
)
43sseq1d 3376 . . . . . . . 8  |-  ( z  =  v  ->  ( ~P z  C_  y  <->  ~P v  C_  y ) )
54cbvralv 2933 . . . . . . 7  |-  ( A. z  e.  y  ~P z  C_  y  <->  A. v  e.  y  ~P v  C_  y )
6 ssid 3368 . . . . . . . . . 10  |-  ~P z  C_ 
~P z
7 sseq2 3371 . . . . . . . . . . 11  |-  ( w  =  ~P z  -> 
( ~P z  C_  w 
<->  ~P z  C_  ~P z ) )
87rspcev 3053 . . . . . . . . . 10  |-  ( ( ~P z  e.  y  /\  ~P z  C_  ~P z )  ->  E. w  e.  y  ~P z  C_  w )
96, 8mpan2 654 . . . . . . . . 9  |-  ( ~P z  e.  y  ->  E. w  e.  y  ~P z  C_  w )
10 pweq 3803 . . . . . . . . . . . . 13  |-  ( v  =  w  ->  ~P v  =  ~P w
)
1110sseq1d 3376 . . . . . . . . . . . 12  |-  ( v  =  w  ->  ( ~P v  C_  y  <->  ~P w  C_  y ) )
1211rspccv 3050 . . . . . . . . . . 11  |-  ( A. v  e.  y  ~P v  C_  y  ->  (
w  e.  y  ->  ~P w  C_  y ) )
13 pwss 3814 . . . . . . . . . . . 12  |-  ( ~P w  C_  y  <->  A. v
( v  C_  w  ->  v  e.  y ) )
14 vex 2960 . . . . . . . . . . . . . 14  |-  z  e. 
_V
1514pwex 4383 . . . . . . . . . . . . 13  |-  ~P z  e.  _V
16 sseq1 3370 . . . . . . . . . . . . . 14  |-  ( v  =  ~P z  -> 
( v  C_  w  <->  ~P z  C_  w )
)
17 eleq1 2497 . . . . . . . . . . . . . 14  |-  ( v  =  ~P z  -> 
( v  e.  y  <->  ~P z  e.  y
) )
1816, 17imbi12d 313 . . . . . . . . . . . . 13  |-  ( v  =  ~P z  -> 
( ( v  C_  w  ->  v  e.  y )  <->  ( ~P z  C_  w  ->  ~P z  e.  y ) ) )
1915, 18spcv 3043 . . . . . . . . . . . 12  |-  ( A. v ( v  C_  w  ->  v  e.  y )  ->  ( ~P z  C_  w  ->  ~P z  e.  y )
)
2013, 19sylbi 189 . . . . . . . . . . 11  |-  ( ~P w  C_  y  ->  ( ~P z  C_  w  ->  ~P z  e.  y ) )
2112, 20syl6 32 . . . . . . . . . 10  |-  ( A. v  e.  y  ~P v  C_  y  ->  (
w  e.  y  -> 
( ~P z  C_  w  ->  ~P z  e.  y ) ) )
2221rexlimdv 2830 . . . . . . . . 9  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( E. w  e.  y  ~P z  C_  w  ->  ~P z  e.  y
) )
239, 22impbid2 197 . . . . . . . 8  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( ~P z  e.  y  <->  E. w  e.  y  ~P z  C_  w )
)
2423ralbidv 2726 . . . . . . 7  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( A. z  e.  y  ~P z  e.  y  <->  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
255, 24sylbi 189 . . . . . 6  |-  ( A. z  e.  y  ~P z  C_  y  ->  ( A. z  e.  y  ~P z  e.  y  <->  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
2625pm5.32i 620 . . . . 5  |-  ( ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  ~P z  e.  y )  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
27 r19.26 2839 . . . . 5  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  ~P z  e.  y ) )
28 r19.26 2839 . . . . 5  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  E. w  e.  y  ~P z  C_  w
) )
2926, 27, 283bitr4i 270 . . . 4  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  <->  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w ) )
3014elpw 3806 . . . . . 6  |-  ( z  e.  ~P y  <->  z  C_  y )
31 impexp 435 . . . . . . . . 9  |-  ( ( ( z  C_  y  /\  z  ~<_  y )  ->  ( -.  z  ~~  y  ->  z  e.  y ) )  <->  ( z  C_  y  ->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) ) )
32 vex 2960 . . . . . . . . . . . 12  |-  y  e. 
_V
33 ssdomg 7154 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
z  C_  y  ->  z  ~<_  y ) )
3432, 33ax-mp 8 . . . . . . . . . . 11  |-  ( z 
C_  y  ->  z  ~<_  y )
3534pm4.71i 615 . . . . . . . . . 10  |-  ( z 
C_  y  <->  ( z  C_  y  /\  z  ~<_  y ) )
3635imbi1i 317 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) )  <->  ( ( z 
C_  y  /\  z  ~<_  y )  ->  ( -.  z  ~~  y  -> 
z  e.  y ) ) )
37 brsdom 7131 . . . . . . . . . . . 12  |-  ( z 
~<  y  <->  ( z  ~<_  y  /\  -.  z  ~~  y ) )
3837imbi1i 317 . . . . . . . . . . 11  |-  ( ( z  ~<  y  ->  z  e.  y )  <->  ( (
z  ~<_  y  /\  -.  z  ~~  y )  -> 
z  e.  y ) )
39 impexp 435 . . . . . . . . . . 11  |-  ( ( ( z  ~<_  y  /\  -.  z  ~~  y )  ->  z  e.  y )  <->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4038, 39bitri 242 . . . . . . . . . 10  |-  ( ( z  ~<  y  ->  z  e.  y )  <->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4140imbi2i 305 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( z  ~<  y  ->  z  e.  y ) )  <-> 
( z  C_  y  ->  ( z  ~<_  y  -> 
( -.  z  ~~  y  ->  z  e.  y ) ) ) )
4231, 36, 413bitr4ri 271 . . . . . . . 8  |-  ( ( z  C_  y  ->  ( z  ~<  y  ->  z  e.  y ) )  <-> 
( z  C_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4342pm5.74ri 239 . . . . . . 7  |-  ( z 
C_  y  ->  (
( z  ~<  y  ->  z  e.  y )  <-> 
( -.  z  ~~  y  ->  z  e.  y ) ) )
44 pm4.64 363 . . . . . . 7  |-  ( ( -.  z  ~~  y  ->  z  e.  y )  <-> 
( z  ~~  y  \/  z  e.  y
) )
4543, 44syl6bb 254 . . . . . 6  |-  ( z 
C_  y  ->  (
( z  ~<  y  ->  z  e.  y )  <-> 
( z  ~~  y  \/  z  e.  y
) ) )
4630, 45sylbi 189 . . . . 5  |-  ( z  e.  ~P y  -> 
( ( z  ~< 
y  ->  z  e.  y )  <->  ( z  ~~  y  \/  z  e.  y ) ) )
4746ralbiia 2738 . . . 4  |-  ( A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y )  <->  A. z  e.  ~P  y ( z  ~~  y  \/  z  e.  y ) )
482, 29, 473anbi123i 1143 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z 
~<  y  ->  z  e.  y ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) ) )
4948exbii 1593 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z  ~< 
y  ->  z  e.  y ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) ) )
501, 49mpbir 202 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707   _Vcvv 2957    C_ wss 3321   ~Pcpw 3800   class class class wbr 4213    ~~ cen 7107    ~<_ cdom 7108    ~< csdm 7109
This theorem is referenced by:  grothomex  8705  grothac  8706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-groth 8699
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-dom 7112  df-sdom 7113
  Copyright terms: Public domain W3C validator