HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Unicode version

Theorem axhcompl-zf 22501
Description: Derive axiom ax-hcompl 22704 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhcompl-zf  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Distinct variable groups:    x, F    x, U

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6  |-  U  e. 
CHil OLD
2 simpl 444 . . . . . 6  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  F  e.  ( Cau `  ( IndMet `  U ) ) )
3 eqid 2436 . . . . . . 7  |-  ( IndMet `  U )  =  (
IndMet `  U )
4 eqid 2436 . . . . . . 7  |-  ( MetOpen `  ( IndMet `  U )
)  =  ( MetOpen `  ( IndMet `  U )
)
53, 4hlcompl 22417 . . . . . 6  |-  ( ( U  e.  CHil OLD  /\  F  e.  ( Cau `  ( IndMet `  U )
) )  ->  F  e.  dom  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) )
61, 2, 5sylancr 645 . . . . 5  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  F  e.  dom  ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) )
7 eldm2g 5066 . . . . . 6  |-  ( F  e.  ( Cau `  ( IndMet `
 U ) )  ->  ( F  e. 
dom  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) )  <->  E. x <. F ,  x >.  e.  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) ) )
87adantr 452 . . . . 5  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( F  e.  dom  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) )  <->  E. x <. F ,  x >.  e.  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) ) )
96, 8mpbid 202 . . . 4  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  E. x <. F ,  x >.  e.  ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) )
10 df-br 4213 . . . . . 6  |-  ( F ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  <->  <. F ,  x >.  e.  ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) )
111hlnvi 22394 . . . . . . . . . 10  |-  U  e.  NrmCVec
12 df-hba 22472 . . . . . . . . . . . 12  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
13 axhil.1 . . . . . . . . . . . . 13  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
1413fveq2i 5731 . . . . . . . . . . . 12  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
1512, 14eqtr4i 2459 . . . . . . . . . . 11  |-  ~H  =  ( BaseSet `  U )
1615, 3imsxmet 22184 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  ( IndMet `  U
)  e.  ( * Met `  ~H )
)
174mopntopon 18469 . . . . . . . . . 10  |-  ( (
IndMet `  U )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( IndMet `
 U ) )  e.  (TopOn `  ~H ) )
1811, 16, 17mp2b 10 . . . . . . . . 9  |-  ( MetOpen `  ( IndMet `  U )
)  e.  (TopOn `  ~H )
19 lmcl 17361 . . . . . . . . 9  |-  ( ( ( MetOpen `  ( IndMet `  U ) )  e.  (TopOn `  ~H )  /\  F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x )  ->  x  e.  ~H )
2018, 19mpan 652 . . . . . . . 8  |-  ( F ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  ->  x  e.  ~H )
2120a1i 11 . . . . . . 7  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( F
( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  ->  x  e.  ~H ) )
2213, 11, 15, 3, 4h2hlm 22483 . . . . . . . . . . . 12  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) )  |`  ( ~H  ^m  NN ) )
2322breqi 4218 . . . . . . . . . . 11  |-  ( F 
~~>v  x  <->  F ( ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) )  |`  ( ~H  ^m  NN ) ) x )
24 vex 2959 . . . . . . . . . . . 12  |-  x  e. 
_V
2524brres 5152 . . . . . . . . . . 11  |-  ( F ( ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) )  |`  ( ~H  ^m  NN ) ) x  <->  ( F
( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  /\  F  e.  ( ~H  ^m  NN ) ) )
26 ancom 438 . . . . . . . . . . 11  |-  ( ( F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x  /\  F  e.  ( ~H  ^m  NN ) )  <->  ( F  e.  ( ~H  ^m  NN )  /\  F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x ) )
2723, 25, 263bitri 263 . . . . . . . . . 10  |-  ( F 
~~>v  x  <->  ( F  e.  ( ~H  ^m  NN )  /\  F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x ) )
2827baib 872 . . . . . . . . 9  |-  ( F  e.  ( ~H  ^m  NN )  ->  ( F 
~~>v  x  <->  F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x ) )
2928adantl 453 . . . . . . . 8  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( F  ~~>v  x 
<->  F ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) ) x ) )
3029biimprd 215 . . . . . . 7  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( F
( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  ->  F  ~~>v  x ) )
3121, 30jcad 520 . . . . . 6  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( F
( ~~> t `  ( MetOpen
`  ( IndMet `  U
) ) ) x  ->  ( x  e. 
~H  /\  F  ~~>v  x ) ) )
3210, 31syl5bir 210 . . . . 5  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( <. F ,  x >.  e.  ( ~~> t `  ( MetOpen `  ( IndMet `  U )
) )  ->  (
x  e.  ~H  /\  F  ~~>v  x ) ) )
3332eximdv 1632 . . . 4  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  ( E. x <. F ,  x >.  e.  ( ~~> t `  ( MetOpen `  ( IndMet `  U ) ) )  ->  E. x ( x  e.  ~H  /\  F  ~~>v  x ) ) )
349, 33mpd 15 . . 3  |-  ( ( F  e.  ( Cau `  ( IndMet `  U )
)  /\  F  e.  ( ~H  ^m  NN ) )  ->  E. x
( x  e.  ~H  /\  F  ~~>v  x ) )
35 elin 3530 . . 3  |-  ( F  e.  ( ( Cau `  ( IndMet `  U )
)  i^i  ( ~H  ^m  NN ) )  <->  ( F  e.  ( Cau `  ( IndMet `
 U ) )  /\  F  e.  ( ~H  ^m  NN ) ) )
36 df-rex 2711 . . 3  |-  ( E. x  e.  ~H  F  ~~>v  x 
<->  E. x ( x  e.  ~H  /\  F  ~~>v  x ) )
3734, 35, 363imtr4i 258 . 2  |-  ( F  e.  ( ( Cau `  ( IndMet `  U )
)  i^i  ( ~H  ^m  NN ) )  ->  E. x  e.  ~H  F  ~~>v  x )
3813, 11, 15, 3h2hcau 22482 . 2  |-  Cauchy  =  ( ( Cau `  ( IndMet `
 U ) )  i^i  ( ~H  ^m  NN ) )
3937, 38eleq2s 2528 1  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2706    i^i cin 3319   <.cop 3817   class class class wbr 4212   dom cdm 4878    |` cres 4880   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   NNcn 10000   * Metcxmt 16686   MetOpencmopn 16691  TopOnctopon 16959   ~~> tclm 17290   Caucca 19206   NrmCVeccnv 22063   BaseSetcba 22065   IndMetcims 22070   CHil OLDchlo 22387   ~Hchil 22422    +h cva 22423    .h csm 22424   normhcno 22426   Cauchyccau 22429    ~~>v chli 22430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ico 10922  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-rest 13650  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-top 16963  df-bases 16965  df-topon 16966  df-ntr 17084  df-nei 17162  df-lm 17293  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-cfil 19208  df-cau 19209  df-cmet 19210  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-vs 22078  df-nmcv 22079  df-ims 22080  df-cbn 22365  df-hlo 22388  df-hba 22472  df-hvsub 22474  df-hlim 22475  df-hcau 22476
  Copyright terms: Public domain W3C validator