HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Unicode version

Theorem axhilex-zf 21561
Description: Derive axiom ax-hilex 21579 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhilex-zf  |-  ~H  e.  _V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 21549 . 2  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
21hlex 21477 1  |-  ~H  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   CHil OLDchlo 21464   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-pr 3647  df-uni 3828  df-iota 5219  df-fv 5263  df-hba 21549
  Copyright terms: Public domain W3C validator