HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhv0cl-zf Unicode version

Theorem axhv0cl-zf 21581
Description: Derive axiom ax-hv0cl 21599 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhv0cl-zf  |-  0h  e.  ~H

Proof of Theorem axhv0cl-zf
StepHypRef Expression
1 axhil.2 . 2  |-  U  e. 
CHil OLD
2 df-hba 21565 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
3 axhil.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
43fveq2i 5544 . . . 4  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
52, 4eqtr4i 2319 . . 3  |-  ~H  =  ( BaseSet `  U )
6 df-h0v 21566 . . . 4  |-  0h  =  ( 0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
73fveq2i 5544 . . . 4  |-  ( 0vec `  U )  =  (
0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
86, 7eqtr4i 2319 . . 3  |-  0h  =  ( 0vec `  U )
95, 8hl0cl 21497 . 2  |-  ( U  e.  CHil OLD  ->  0h  e.  ~H )
101, 9ax-mp 8 1  |-  0h  e.  ~H
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   <.cop 3656   ` cfv 5271   BaseSetcba 21158   0veccn0v 21160   CHil
OLDchlo 21480   ~Hchil 21515    +h cva 21516    .h csm 21517   normhcno 21519   0hc0v 21520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-riota 6320  df-grpo 20874  df-gid 20875  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-cbn 21458  df-hlo 21481  df-hba 21565  df-h0v 21566
  Copyright terms: Public domain W3C validator