HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhv0cl-zf Unicode version

Theorem axhv0cl-zf 22338
Description: Derive axiom ax-hv0cl 22356 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhv0cl-zf  |-  0h  e.  ~H

Proof of Theorem axhv0cl-zf
StepHypRef Expression
1 axhil.2 . 2  |-  U  e. 
CHil OLD
2 df-hba 22322 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
3 axhil.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
43fveq2i 5673 . . . 4  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
52, 4eqtr4i 2412 . . 3  |-  ~H  =  ( BaseSet `  U )
6 df-h0v 22323 . . . 4  |-  0h  =  ( 0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
73fveq2i 5673 . . . 4  |-  ( 0vec `  U )  =  (
0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
86, 7eqtr4i 2412 . . 3  |-  0h  =  ( 0vec `  U )
95, 8hl0cl 22254 . 2  |-  ( U  e.  CHil OLD  ->  0h  e.  ~H )
101, 9ax-mp 8 1  |-  0h  e.  ~H
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   <.cop 3762   ` cfv 5396   BaseSetcba 21915   0veccn0v 21917   CHil
OLDchlo 22237   ~Hchil 22272    +h cva 22273    .h csm 22274   normhcno 22276   0hc0v 22277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-1st 6290  df-2nd 6291  df-riota 6487  df-grpo 21629  df-gid 21630  df-ablo 21720  df-vc 21875  df-nv 21921  df-va 21924  df-ba 21925  df-sm 21926  df-0v 21927  df-nmcv 21929  df-cbn 22215  df-hlo 22238  df-hba 22322  df-h0v 22323
  Copyright terms: Public domain W3C validator